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ABSTRACT 

Research reveals that the majority of students are unprepared in making the 

transition from high school to college mathematics.  Many students choose majors outside 

of STEM and business fields to pursue degrees with less rigorous mathematics 

requirements. According to recent findings, it is likely that over 25% of all freshmen will 

fail their first mathematics course. Few studies examine student success in business 

mathematics courses, and business is currently the most popular major in the United 

States.  Thus, the purpose of this research was to examine what factors predict success in a 

foundational business mathematics course (BUS 111) at a large Northeastern university.   

Eight independent variables were examined: gender, high school GPA, 

mathematics SAT score, score on the university’s placement exam, student attitudes 

using the Attitudes Towards Mathematics Inventory (ATMI), anxiety using the 

Mathematics Anxiety Scale (MAS), number of hours per week spent on mathematics, and 

number of classes missed. The dependent variable was BUS 111 final average.  All 

students (n = 247) enrolled in BUS 111 were invited to participate during the Fall 2015. 

Upon completion of pre- and post-surveys, multiple regression was used to determine 

which variables were significant predictors. Statistical findings revealed that placement 

score, high school GPA, a combination of ATMI/MAS scores, and number of classes 

missed were the best predictors of BUS 111 average overall (R2 = 44.2%, p = 0.000).  

Different models are presented for comparison and examination.  Significant correlations 

found between perceived instructor effectiveness and student attitudes, anxiety, and 

course grades are also presented.  Overall, combinations of non-affective and affective 

measures serve as the best predictors of success in business mathematics. 
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CHAPTER ONE: 
FRAMING THE STUDY 

Mathematics education is an imperative component of the general education 

curriculum in the United States (Parker, 2005; Perini, Silver, Strong, & Thomas, 2004; 

Tobias, 1987).  Each year, thousands of students in America graduate high school and 

enter college with dreams of preparing for enjoyable, rewarding careers. Many studies 

have revealed that students are severely unprepared in making the transition to college, 

especially for mathematics courses (Barnes, Cerrito, & Levi, 2004; Corbishley & 

Truxaw, 2010; Hammerman & Goldberg, 2003; Perini et al., 2004; Taylor, 2008; Thiel, 

Perman, & Brown, 2008; Zelkowski, 2011).  General mathematical competency, critical 

thinking, and problem solving skills are necessary in many occupations today (Ballard & 

Johnson, 2004; Kesici & Erdogan, 2009; Mesa, 2012; Reisel, Jablonski, Hosseini, & 

Munson, 2012; Thiel et al., 2008; Tobias, 1987; Zelkowski, 2011).  Furthermore, there is 

a widespread philosophical belief that “the study of mathematics offers students [an] 

opportunity to discover, create, and communicate” (Parker, 2005, p. 23).  In recent years, 

research has shown that students who possess a strong mathematical understanding will 

not only have access to more opportunities for academic success, but will also be granted 

more opportunities throughout their careers.  Success in college mathematics courses is a 

strong predictor of retention in college as well as outlooks for career growth and financial 

success in the working world (Corbishley & Truxaw, 2010; Hall & Ponton, 2005; Kesici 

& Erdogan, 2009; Mesa, 2012; Parker, 2005; Perini et al., 2004; Taylor, 2008; Thiel et 

al., 2008).  

At the same time, it is no secret that mathematics has historically been seen as one 

of the most challenging academic content areas—especially in college.  Based on current 

trends, it is likely that in the 2015-2016 academic year, over 25% of all college freshmen 

will fail their first college mathematics course (Bahr, 2012; Pugh & Lowther, 2004).  A 

number of news and other media outlets frequently report that our nation’s mathematics 

scores are plummeting, students are entering the workforce mathematically unprepared, 
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and the majority of the United States population seems to dislike or even fear 

mathematics (Davis & Shih, 2007; Frost, Coomes, & Lindebald, 2009; Hammerman & 

Goldberg, 2003; Reisel et al., 2012; Tobias, 1987).  

Statement of the Problem 

College freshmen report great struggles throughout their mathematics courses and 

therefore often choose majors that require the fewest number of mathematics credits or 

mathematics-based coursework (Hall & Ponton, 2005; Perini et al., 2004; Smith & 

Schumacher, 2005; Zelkowski, 2011).  Specifically, research posits that students tend to 

resort to majors and career choices outside of science, technology, engineering, 

mathematics (STEM), and business fields, to pursue a degree that requires less rigorous 

mathematics courses (Long, Iatarola, & Conger, 2009;  McDuffie & Graeber, 2003; 

Smith & Schumacher, 2005).   Many students struggle with mathematics and, even when 

choosing elective courses, they tend to avoid classes that involve mathematical thinking 

or mathematics-based applications.  Mathematics author and educator Sheila Tobias 

found that: 

Americans apparently believe… that mathematical ability is a very rare talent, 

possessed by only a few and utterly impossible to attain if one is not born with a 

gift for it; hard work, then, has little to do with increasing mathematical 

understanding.  And, with this perception, American teenagers continue to sink 

below their international peers in mathematical performance. (Tobias, 1987, p. 

236-237) 

This perception still tends to be held by many American students today (Corbishley & 

Truxaw, 2010; Kesici & Erdogan, 2009; Mesa, 2012). 

Research suggests that most college freshmen lack confidence in mathematics and 

are unaware of how to be successful in a college-level course, often leading to anxiety 

and failure (Barnes et al., 2004; Corbishley & Truxaw, 2010; Zelkowski, 2011).  The 

literature examined, which is described in more detail in chapter three, also posits that 
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many college students do not feel adequately prepared for their college-level mathematics 

courses.  Their mathematical anxiety, attitudes towards mathematics, and perceptions 

about the subject are closely linked to their grades in college mathematics courses 

(Barnes et al., 2004; Hall & Ponton, 2005; Kesici & Erdogan, 2009; Samad, Tuah, & 

Haron, 2009; Zelkowski, 2011).   Further, the same student may have vast differences in 

success taking the same course with different instructors (Corbishley & Truxaw, 2010; 

Hiebert & Grouws, 2007; Marzano, Gaddy, & Dean, 2000; McDuffie & Graeber, 2003; 

Mesa, 2012; Okoro, 2014). 

While many quantitative studies have investigated factors that predict success in 

college mathematics, the majority of this research has focused on variables such as gender, 

SAT scores, percentile rank in high school, and high school GPA (Bridgeman, Pollack, & 

Burton, 2008; Kesici & Erdogan, 2009; Smith & Schumacher, 2005; Taylor, 2008).  Much 

of the research has focused on remedial mathematics courses or mathematics courses 

designed for STEM majors (Bahr, 2012; Hagedorn, Siadat, Fogel, Nora, & Pascarella, 

1999; Hall & Ponton, 2005; Mesa, 2012).  A number of qualitative studies have 

investigated effects of attitudes towards mathematics, mathematical anxiety, and 

confidence in mathematical ability (Barnes et al., 2004; Hall & Ponton, 2005; Mesa, 2012; 

Samad et al., 2009).  However, there is a distinct lack of research that examines how these 

affective and cognitive variables can be used to predict success in business mathematics 

courses. Acquiring a better understanding of how these factors play a role in college 

students’ success in business mathematics could help practitioners better prepare students 

with study strategies, curriculum designs, and instructional changes that would maximize 

learning opportunities in business programs.   

College freshmen majoring in business at the University of Rhode Island (URI) 

are experiencing this mathematical struggle.  These students must successfully complete 

a foundational business mathematics course (BUS 111:  Introduction to Business 

Analysis and Applications) in order to proceed in URI’s College of Business 
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Administration degree program.  For the last decade, this course has had a failure rate of 

approximately 31% (P. Boyd-Ferguson, personal communication, March 9, 2015).  Thus, 

nearly one in every three students who enters URI with dreams of earning a degree in 

business must either retake this foundational course, thus spending extra time and money 

at the university, or change their major to one with more achievable mathematics 

requirements.  A preliminary mathematics course (MTH 110:  Mathematical Foundations 

for Business Analysis) is offered to help prepare students for BUS 111, but many 

students do not choose to take this remedial course for fear of falling behind in the 

business degree program.   

Therefore, the purpose of this research study was to examine what factors predict 

student success in a foundational business mathematics course (BUS 111) at URI.  With a 

dependent variable of final average in BUS 111, various independent variables (gender, 

high school GPA, mathematics SAT score, university mathematics placement test score, 

number of hours devoted to mathematics outside of class each week, number of BUS 111 

classes missed, attitudes towards mathematics, perceived instructional effectiveness, and 

mathematical anxiety) were examined to see which combination of variables could be 

used to best predict student success in BUS 111.  Investigating this relationship can help 

students understand how to maximize their chances for success in business mathematics.  

Further, it can help URI’s College of Business instructors, advisors, and support staff 

better teach and advise students by providing more targeted strategies for achievement 

and retention. 

Significance of the Study 

There is currently a distinct lack of research that examines the relationship 

between success in college business mathematics courses and student attitudes, 

mathematical anxiety, perceived instructor effectiveness, and time devoted to the subject.  

Insight into student attitudes and perceptions may help reveal the predictors of success in 

business mathematics, allowing for better advising and specific study strategy 
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recommendations for students.  The quantitative, statistical study described here has 

attempted to fill this gap in the literature by investigating the possible predictors of 

mathematics success in a foundational college business course (BUS 111) through 

multiple regression and correlational analysis.  The resulting predictor equations and 

regression coefficients could help inform departmental curricular and instructional 

changes that could ultimately lead to more students finding success in business 

mathematics.  Business is a major increasing in popularity, with approximately 367,000 

students earning a business degree out of the total 1.791 million degrees conferred in 

2012 (U.S. Department of Education, National Center for Education Statistics, 2015).  

Thus, approximately 20% of all college graduates are earning a degree in a business field, 

making it the most popular major in the United States. 

While this multiple regression analysis was exploratory in nature to investigate 

which variables were significant predictors, any results obtained could be used to inform 

future practice.  If the current placement test used by the university was not found to be a 

strong predictor of success in BUS 111, a new process may need to be designed and 

implemented to better inform and prepare students.  If mathematics SAT score or high 

school GPA were found to be strong predictors, then the College of Business may need to 

reexamine the admissions requirements.  If gender was a strong predictor, the College 

may need to reexamine the current curriculum and instruction to look for potential gender 

bias.  If the number of classes missed over the semester or the number of hours spent on 

mathematics outside of class per week were strong predictors, professors might consider 

requiring or at least encouraging more homework, and students could be made aware of 

this predictive relationship upon starting the course.  If student attitude towards 

mathematics, confidence, or mathematical anxiety were strong predictors, students could 

be made aware of this connection and provided with tools or strategies to help them 

address these factors.  

Despite the results, performing this research can promote positive changes for 
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URI’s College of Business students, faculty, and support staff alike.  The predictor 

equations presented in chapter five can help college students at URI understand how to 

increase their opportunities for success in business mathematics.  Students can be 

provided with targeted strategies to help them proceed confidently in the College of 

Business.  Student advisors can be made aware of the predictive relationships discovered 

and can learn how to use these equations to better advise students.  Further, as discussed 

in chapter six, these relationships can be used to inform further research and future 

decisions for the mathematics curriculum and instructional practices in the College of 

Business at the University of Rhode Island. 
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CHAPTER TWO:   
THEORETICAL FRAMEWORK  

In this chapter, I describe my personal theoretical framework as well as the 

existing theories relating to this study.  Specifically, I examine socio-cultural and 

constructivist learning and teaching theories as well as adult learning theories that frame 

my research.  I then describe my views as a pragmatic, student-centered researcher. I 

believe it is impossible, however, to completely detach what we say and write from who 

we are.  Therefore, I feel it is only appropriate to begin with a brief introduction of who I 

am as a student, researcher, and educator.  The concept map on the following page 

(Figure 1) presents an overall diagram of how I arrived at my research questions, which 

are presented in chapter three. 

Meet the Researcher 

 I am a white, middle-upper-class, determined female.  I generally use “educator” 

as the first noun to describe myself.  And I love (really, really love) mathematics. In spite 

of being successful throughout my academic mathematical journey, I have suffered from 

anxiety and fear in school throughout my entire life.  I grew up in a small, suburban town 

in Ohio and moved to Rhode Island with my family during high school.  I took advanced 

mathematics courses throughout middle school and high school and was often one of 

very few females in those advanced classes.  I graduated from the University of Rhode 

Island in 2009 with a double major in Mathematics and Secondary Education.  I 

thoroughly enjoyed learning higher-level mathematics, but it never came easily to me:  I 

always felt compelled to study for hours each evening in order to earn high grades and I 

rarely felt confident in my ability to perform mathematics or teach the subject to others, 

though both activities were my passions.  Before I began each new mathematics course, I  
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Figure 1.  Concept Map Leading to Research Questions
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felt nervous about what was to come and whether I could succeed in my new 

mathematical journey. 

Unsure whether high school teaching was for me (or whether I was cut out for 

high school teaching), I entered URI’s Master’s degree program in mathematics upon 

graduation.  Immediately, I realized that my favorite component of the Mathematics 

Master’s program was having the opportunity to teach college freshmen introductory 

mathematics courses.  As a result of this realization, I began a second Master’s degree in 

Secondary Education in 2010.  In 2012, I completed both Master’s degrees and entered 

the joint Ph.D. in Education program between the University of Rhode Island and Rhode 

Island College.  At that point, I had just started a new job as a Learning Specialist at URI, 

where I helped individual students learn about self-assessing techniques, study skills, 

advocacy, and how to lower academic anxiety.  Though I loved the job, I missed teaching 

mathematics. 

In 2013, I was hired by my current employer, the College of Business 

Administration at URI, to teach undergraduate business mathematics courses.  

Specifically, I was asked to teach MTH 110 (a remedial mathematics course providing 

students with foundations required for business mathematics), BUS 111 (a business 

calculus course required for admission into the College of Business), BUS 210:  

Managerial Statistics (an introductory business statistics course), and BUS 211: 

Managerial Decision Support Systems (an advanced business statistics course focusing 

on multiple regression analysis, specifically designed for students in the management 

specialization).  It is here that I have found my home.  I genuinely look forward to 

coming to work everyday and investigating new techniques to improve myself as an 

educator and help my students learn about the value and beauty of mathematics.  I learn 

more from my students each day than I ever learned through formal education.  I usually 

consider myself both a student and an educator in all contexts through my daily work.  I 

see research opportunities everywhere I look as I constantly seek new ways to help my 
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students and improve my teaching practices.  The University of Rhode Island, its 

students, faculty, and staff are extremely important to me, and I hope to give back to this 

community by researching ways to enhance student success.   

Connecting Published Theories to My Research 

In the following sections, I describe the existing theories that connect closely to 

my research in college mathematics education, based on my personal theoretical 

framework as a student-centered educator.  Having a strong understanding of these 

underlying theories, as well as recognizing the weaknesses in each theory, was essential 

to understanding the data I collected and analyzed in chapters five and six.  Specifically, I 

focus on Vygotsky’s theory of socio-cultural learning (Vygotsky, 1978), which builds off 

of Dewey’s recognition of the importance of using reflection and personal experiences to 

drive learning outcomes (Dewey, 1938).  I also describe constructivism as an approach to 

teaching and learning (Fosnot & Perry, 2005; Piaget, 1964; Von Glasersfeld, 2005; 

Vygotsky, 1978), inquiry-based learning and the activation of prior knowledge (Levy & 

Petrulis, 2012; Marzano et al., 2000; Ormrod, 2011); as well as various applicable 

theories regarding adult learning (Knowles, 1988; McCluskey, 2007; Merriam & 

Brockett, 2007; Merriam, Caffarella, & Baumgartner, 2007).  Analyzing these existing 

theories leads into my personal theoretical framework, which provides an underlying 

structure for this study.   

Learning as a Socio-Cultural Experience:  Vygotsky and Bandura 

In the beginning of the twentieth century, psychologist Lev S. Vygotsky 

introduced a socio-cultural approach to learning, emphasizing that social interactions and 

cultural experiences influence a person throughout every stage of development and guide 

their meaning making processes (Kozulin, 1994; Vygotsky, 1978). Society, cultural 

norms, and personal experiences greatly impact the way in which all individuals create 

meaning and also influence how each student learns and makes sense of the world around 

them (Cobb, 2005; Dewey, 1938; Fosnot & Perry, 2005; Vygotsky, 1978).  Humans are 
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social beings.  We long for acceptance and are deeply influenced by those around us in 

all that we do.  We are constantly adapting to the changing culture and the socially 

accepted norms of our world. Vygotsky believed that “every function in the [student]’s 

development appears twice:  first, on the social level, and later on the individual level; 

first between people… and then inside the [student]” (Vygotsky, 1978, p. 57, emphasis in 

original).  In other words, we are not born as individuals who develop into social beings 

over time; rather, we are born as social beings and gradually grow into individuals. 

Therefore, the current lecture method of instruction present in many college mathematics 

and business mathematics courses, which often lacks social opportunities and peer 

interaction, is likely to be limiting student learning.   

Similar to Vygotsky, psychologist Albert Bandura theorized that social 

interactions and modeling lead to learning (Bandura, 1986).  While Vygotsky focused on 

the importance of language as a tool for development, Bandura examined how novices 

model the behaviors of others as they develop.  Bandura introduced what is known as 

social cognitive theory, which states that learning occurs as individuals observe others, 

interpret various behaviors, and interact with their peers (Bandura, 1986; Ormrod, 2011).  

The environment influences individuals and individuals influence the environment.  

Furthermore, Bandura recognized that self-efficacy plays a major role in learning 

(Bandura, 1986; Bandura, 1997).  He found that learners with low self-efficacy, or those 

who believed that they were unlikely to reach a goal, were less likely to persist or try new 

things.  Learners with high self-efficacy, which he defined as “the belief in one’s 

capabilities to organize and execute the courses of action required to manage prospective 

situations” were more likely to feel in control through new learning experiences and thus 

more likely to succeed at learning new behaviors or completing challenging tasks 

(Bandura, 1997, p. 3).  In both Vygotsky and Bandura’s research, the incorporation of 

some social interaction was pivotal to learning. 

Most people learn best through a combination of critical dialogue, deep reflection, 
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and connection to personal experiences (Bandura, 1986; Dewey, 1938; Fosnot & Perry, 

2005; Jaeger, 2013; Schön, 1983; Von Glasersfeld, 2005; Vygotsky, 1978).  Even at the 

college level, students need social opportunities to help guide their thinking and construct 

new knowledge.  By relying on the professor as the sole giver of information, it would be 

natural for college students to start to believe that knowledge is external and cannot be 

independently created.  So, after college, upon entering the workforce, how can we 

expect these graduates to construct their own knowledge, create original products, think 

critically, or solve authentic problems?  Mathematics professors could help facilitate the 

learning process from a socio-cultural or social cognitive frame by encouraging 

classroom discourse, welcoming questions and explanations of experiences, fostering 

personal connections, and promoting social group work and innovative thinking.  

A limitation of socio-cultural learning is that it focuses on the group before the 

individual, which challenges some of the current competitive, egocentric educational 

settings.  Some educators believe that because each learning experience is likely to be 

different for each student, a more competitive environment would foster a deeper desire 

to learn (Frost et al., 2009; Levy & Petrulis, 2012; Long et al., 2009).  Many college 

classrooms (as well as many K-12 classrooms) adapt a deficit-thinking, meritocracy-

based climate and encourage competition over cooperation; leading students to believe 

that those who work the hardest are most likely to succeed.  This neglects all cultural and 

social components of learning and opportunities for success in school.  Vygotsky (1978) 

instead posits that learning is a social experience that cannot possibly be isolated from all 

cultural contexts.  Therefore, educators must embrace opportunities for discourse and 

cultural connections. 

Constructivism as a Learning Approach:  Piaget, Vygotsky, and Von Glasersfeld 

Teaching should help enhance learning and development by providing students 

with opportunities to construct a deep, personal understanding of a topic (Bandura, 1986; 

Dewey, 1938; Fosnot & Perry, 2005; Von Glasersfeld, 2005; Vygotsky, 1978).  Without 
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giving students time to generate their own meanings and make connections (either 

independently or socially through interactions with others), it will be difficult for learning 

to occur.  The underlying idea of constructivist theory is that “learning is a process of 

constructing meaning; it is how people make sense of their experience” (Merriam et al., 

2007, p. 291).  Therefore, in constructing new knowledge, students benefit from having 

time to reflect on their personal experiences and discuss their connections and questions 

with others.   

Scientist Jean Piaget is often considered the father of constructivism (Piaget, 

1964; Sjøberg, 2010).  Unlike Vygotsky, who focused on social elements of 

constructivism, Piaget instead originally examined constructivism on an individual level 

(Sjøberg, 2010).  Though Piaget was a scientist who was not researching educational 

applications of his studies, many educators cite his work and apply his theories.  He was 

interested in the nature of knowledge, believing that building knowledge took more than 

observation and innate development (Piaget, 1964).  Piaget believed that learning 

occurred as individuals adapted to the world around them (Ormrod, 2011; Von 

Glasersfeld, 2005).  Individuals, then, constructed knowledge through assimilation (using 

existing schema to make sense of a new concept) or accommodation (creating a new 

schema or modifying an existing schema to make sense of a new concept) to the external 

world (Ormrod, 2011; Piaget, 1964; Sjøberg, 2010). 

Vygotsky, who was introduced in the previous section, was heavily influenced by 

Piaget.  He believed, however, that learning could not occur in isolation from direct 

social interaction with others and, in fact, that much learning occurred because of social 

interactions (Vygotsky, 1978).  A contemporary of these two influential constructivist 

theorists was Ernst von Glasersfeld.  Von Glasersfeld added yet another component to 

social constructivism, which was the importance of inquiry and environment in social 

learning experiences (Cobb, 2005).  He theorized that knowledge was not created 

externally or identically for different learners.  He believed “when we intend to stimulate 
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and enhance a student’s learning, we cannot afford to forget that knowledge does not 

exist outside a person’s mind” (Von Glasersfeld, 2005, p. 5).  Further, von Glasersfeld 

stressed the importance of trial and error in learning so that students could see various 

results of diverse behaviors and ask questions as they learned and adapted.  As a 

constructivist, he understood that the educator’s role was to provide opportunities for 

students to create knowledge.  Knowledge could not be given to learners (Cobb, 2005; 

Von Glasersfeld, 2005).  

Educator and physicist Svein Sjøberg (2010) provides an overview of core 

components to understanding constructivism as a learning approach.  Five of his 

components are fundamental in my own appreciation of constructivism in college 

mathematics environments: 

1. “Knowledge is actively constructed by the learner, not passively received 

from the outside. Learning is something done by the learner, not 

something that is imposed on the learner” (Sjøberg, 2010, p. 3). 

2. “Learners come to the learning situation… with existing ideas about many 

phenomena.  Some of these ideas are ad hoc and unstable; others are more 

deeply rooted and well developed” (Sjøberg, 2010, p. 3). 

3. Learners have their own “ideas about the world, but there are also many 

similarities… in their ideas.  Some of these ideas are socially and 

culturally accepted and shared” (Sjøberg, 2010, p. 3). 

4. The ideas described above are not always mathematically accurate and 

“may be persistent and hard to change” (Sjøberg, 2010, p. 3). 

5. Teachers must “take the learner’s existing ideas seriously if they want to 

change or challenge [them]” (Sjøberg, 2010, p. 3). 

Currently, many college mathematics professors engage in direct instruction and 

lecturing, where learning is assumed to occur through transmission of ideas and feedback 

on assessments, requiring students to learn mathematics without personal connections 
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(Ormrod, 2011). College professors should instead allow students to discuss their 

culturally-based attitudes about mathematics, share their personal experiences, discover 

the mathematics involved in those experiences through exploratory social interactions, 

and together construct strategies to solve realistic problems.  By understanding students’ 

perceptions about mathematics and realizing students’ potential anxiety towards the 

subject due to previous experiences, professors could help their college students 

reconsider and possibly reconstruct their views on the value of the subject.  Once the 

subject is seen as valuable in authentic learning situations, students are more likely to be 

able to apply mathematical skills in new contexts, earn higher grades, and feel successful 

(Cobb, 2005; Dewey, 1938; Fosnot & Perry, 2005).   

At the University of Rhode Island, roughly 47% of all students who took a 

freshmen-level pre-calculus course during the Fall of 2014 earned failing grades (D. 

Libutti, personal communication, January 16, 2015).  In most of these courses, a 

behaviorist model of teaching exists, where the assumption is that listening to the 

professor speak “will result in learning” (Fosnot & Perry, 2005, p. 9).  Students are 

treated like machines:  the professor feeds them information and they are expected to 

memorize and replicate these processes on an exam. The goal seems to be to get students 

to remember the information deemed important by the professor, not to help students 

construct and develop a true understanding of or appreciation for mathematics (Fosnot & 

Perry, 2005; Kohlberg & Mayer, 1972; Von Glasersfeld, 2005).  

From the eyes of a college professor, a difficulty of utilizing constructivism in the 

classroom may be that it initially requires more time and flexibility than traditional 

lecturing.  Professors often feel as though they must “get through” as many topics as 

possible, and therefore class time must be devoted to giving students as much information 

as they can in a limited amount of time (Ironsmith, Marva, Harju, & Eppler, 2003; Long 

et al., 2009).  Professors do not want to “waste” class time by not engaging in fast-paced 

direct instruction where students act as silent observers.  While it may be true that less 
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material can initially be “covered” in a constructivist classroom, students will likely gain 

greater knowledge and understanding on the topics that are presented (Fosnot & Perry, 

2005).  Professors would likely spend less time re-teaching material, as students would 

have a better opportunity to truly comprehend the information the first time if they were 

to construct the knowledge independently and then build deeper connections through 

discourse.   

Speaking from a constructivist frame, college mathematics professors must 

provide opportunities for students to build, develop, and explore their own mathematical 

knowledge (Dewey, 1938; Fosnot & Perry, 2005).  Rather than lecturing in front of the 

classroom and expecting knowledge to seep into students’ minds through cultural 

transmission, professors should present challenging problems that require students to 

discuss possibilities with their peers, make connections, and develop strong problem 

solving skills.   Errors made in mathematics often lead to deeper understanding, 

compelling discussions, and meaningful analysis, which can greatly facilitate student 

learning.  However, currently in college classes, students are so concerned with getting 

the correct answer that they neglect to recognize the skills they are developing as they 

work through problems (Perini et al., 2004; Rittenhouse, 1998).  Professors can change 

this by emphasizing the importance of the process rather than the final product and by 

dissecting both correct and incorrect solutions obtained with enthusiasm and 

encouragement.  This constructivist approach may also help students understand that 

developing problem solving skills and an appreciation for the value of mathematics is 

more important than getting the “right” answer (Fosnot & Perry, 2005; Rittenhouse, 

1998). One of the most powerful tools in any classroom, which greatly supports this 

development and enhances learning, is reflection (Brown, 1987; Dewey, 1938; Vygotsky, 

1978). Students must be given time to practice independently, interact with peers, and 

reflect on the conversations, the learning, and the experiences that occurred if they are to 

move from dependent to independent learners who are capable of applying mathematical 
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concepts outside of the classroom.  

Inquiry-Based Learning and Activating Prior Knowledge 

Inquiry learning in a classroom environment typically involves asking questions 

that both encourage higher-level thinking and help students think critically about how 

they might approach seeking new information or independently constructing new 

knowledge (Levy & Petrulis, 2012; Marzano et al., 2000; Ormrod, 2011).  Inquiry-based 

instruction allows students to explore a new topic in a way that is both authentic and 

meaningful, often through ill-posed problems or in-depth projects.  Generally, the 

instructor will ask many questions throughout the process to encourage deeper thinking 

and understanding. Some researchers see inquiry learning in college “as the means of 

fostering in students the critical, reflexive… qualities needed for positive agency in a 

profoundly uncertain, complex world” (Levy & Petrulis, 2012, p. 86). Inquiry learning is 

strongly tied to constructivism, as the key goal is to provide an opportunity for students to 

create their own knowledge through experience.  Though inquiry learning is a relatively 

common strategy in elementary grades, it is less common in secondary grades and is 

rarely seen in college instruction.  However, educational leadership professors Philippa 

Levy and Robert Petrulis (2012) believe that “students’ engagement in inquiry… is 

essential for developing their self-belief and capabilities as active participants in the (co-) 

creation of meaning and knowledge” (p. 87). 

Similar to engaging in inquiry learning, activating prior knowledge is another 

method which offers students the opportunity to make connections to personal 

experiences. Activating a student’s prior knowledge is the process of asking questions or 

discussing topics that students are already familiar with before introducing a new concept 

(Marzano et al., 2000; Ormrod, 2011).  This allows students to see connections between 

what they already know and what they are about to learn, which can lead to higher 

interest, lower anxiety, and deeper understanding.  By asking questions that remind 

students of what they already know and pushing them to think deeper about that topic, 
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instructors can help their students feel more confident about exploring a new or 

challenging mathematical or business-based concept.   

Connections to College Mathematics Education 

Contemporary research findings (Levy & Petrulis, 2012; Perini et al., 2004; Thiel 

et al., 2008) imply that in college-level mathematics, students often do not see themselves 

as active meaning makers.  Students rely on the professor to provide knowledge rather 

than feeling capable of constructing knowledge on their own.  They are not builders, but 

merely receivers of information.  Through inquiry-based lessons that activate students’ 

prior knowledge, students are more likely to serve as active participants in the classroom 

(Levy & Petrulis, 2012; Marzano et al., 2000; Ormrod, 2011).  Students need a 

supportive learning environment where they feel free to ask questions and be curious 

about the mathematics in their lives.  Since mathematical anxiety and attitudes regarding 

mathematics likely play a role in student success, developing student confidence should 

be a goal of mathematics professors (Hall & Ponton, 2005; Kesici & Erdogan, 2009).  As 

constructivist educator Eleanor Duckworth (2006) posits, “having confidence in one’s 

ideas does not mean ‘I know my ideas are right’; it means ‘I am willing to try out my 

ideas’” (p. 5).  By allowing students to develop their own questions and thoughts about 

mathematics in business and work collaboratively to explore those questions in a safe 

environment, they can develop a genuine curiosity about the subject and gain confidence 

in their abilities to generate hypotheses, reason, and problem-solve (Thiel et al., 2008; 

Wittrock, 1986). 

Educational psychologist Ann Brown suggests “all active learning involves self-

regulation” (1987, p. 68).  I believe that by helping students develop problem-solving 

skills and gain confidence in their abilities through inquiry learning and the activation of 

prior knowledge, instructors will also help lead students towards self-regulation, as they 

will be less fearful of tackling business-based mathematical challenges on their own. 

Therefore, college mathematics educators must implement a curriculum that allows 
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students to become more confident, self-directed learners.  Knowing how to solve a 

problem in the classroom does not necessarily indicate that a student will be able to 

access that knowledge and apply it to a real life situation, unless learning is constructed in 

a personal, meaningful way (Brown, 1987; Dewey, 1938; Vygotsky, 1978).  I do not 

believe this meaningful construction is possible in a teacher-centered, lecture-based 

classroom that does not encourage inquiry or value previous learning experiences.  

Students do not arrive as “blank slates” in college mathematics courses. College 

instructors must understand and appreciate the fact that student attitudes, levels of 

anxiety, and views about mathematics likely influence their ability to be successful in the 

college classroom.  If professors realize that there is more to students than their previous 

exam scores and GPA, I believe a more constructivist, socio-cultural, student-centered 

classroom approach may be possible.  Thus, I have chosen affective and cognitive 

variables to investigate in my multiple regression analysis for this dissertation, as 

explained in more detail in the following chapter.  If student attitudes or anxiety towards 

mathematics explain some of the variability in a business mathematics course grade, 

professors may start to realize that a behaviorist, instructor-centered approach is likely 

not conducive to student learning.  This research has allowed me to explore the degree to 

which these affective variables influence a student’s grade.  If business mathematics 

professors adapt constructivist, inquiry-based lessons into their teaching or develop 

methods to activate students’ prior knowledge, I believe students may find it easier to 

make personal connections to mathematics, lower their anxiety, and understand the value 

of mathematics in their lives.  

Adult Learning Theories:  McCluskey, Spear, and Grow 

 Though many of the theories described above can be applied to the majority of 

learners at all stages of development, most of the research used to develop those theories 

involved students in a K-12 environment who were under the age of 20.  Even the limited 

research performed in college settings has focused mainly on learners between the ages 
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of 18 and 22.  As of 2011, over 36% of all students enrolled in institutions of higher 

education nationally were over the age of 25 (Center for Post-Secondary and Economic 

Success, 2011).  Therefore, various theories on andragogy, or “the art and science of 

helping adults learn” (Knowles, 1988, p. 43) and adult learning processes, rather than just 

pedagogy and child development, must be considered.  A few of these influential theories 

are presented in this section. 

Adult learners bring a variety of experiences to the college classroom that could 

potentially contribute to their learning and meaning making processes (Knowles, 1988; 

Merriam & Brockett, 2007; Merriam et al., 2007).  As students enter college, a number of 

situational, institutional, and dispositional barriers must often be faced.  Situational 

barriers include the high cost of courses at institutions of higher education, time 

management concerns, and ensuring loved ones are cared for while they pursue their 

degree (Knowles, 1988; Merriam et al., 2007).  Similarly, institutional barriers include 

the location of the college and the new schedule of courses, as well as the challenges that 

these changes might present. Finally, dispositional barriers consist of how adult learners 

view their journey to college.  Many adults who enroll in higher education courses feel 

unsure of their academic ability or have negative learning experiences from their past that 

get in the way of their current learning processes (Merriam et al., 2007). 

One of the greatest barriers students seem to face when entering post-secondary 

education, regardless of their age, is being able to find the time to finish everything they 

need to accomplish (Hall & Ponton, 2005; Kesici & Erdogan, 2009; McCluskey, 2007; 

Merriam & Brockett, 2007; Merriam et al., 2007).  According to McCluskey’s Theory of 

Margin, developed by adult educator Howard McCluskey (2007), adult learners must 

figure out a way to discover an appropriate balance between their load, or their 

responsibilities, and their power, or how much control they have over their load and how 

to overcome the potential barriers to their achievement.  In order to discover this balance 

and find success in higher education, learners must be given the support and 
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encouragement they need in order to continue.  Similar to socio-cultural and 

constructivist views, adult learning theorists argue that “learners must connect what they 

have learned from current experiences to those in the past as well as see possible future 

implications” (Merriam et al., 2007, p. 223). 

 Similar to Dewey (1938), Vygotsky (1978), and von Glasersfeld (2005), adult 

educator George Spear believes that every learning experience a student encounters is 

influenced by their environment, prior knowledge, and random occurrences (Merriam et 

al., 2007). In higher education, professors can use Spear’s philosophy to recognize the 

potential obstacles and strengths that each student brings to the table, help each student 

define their goals, and discuss these experiences and goals before delving into learning. 

Instructors cannot make connections for students, but should offer opportunities for 

dialogue and reflection that encourage adult learners to relate the new knowledge to past 

and current experiences (Merriam et al., 2007).  This concept aligns with McCluskey’s 

Theory of Margin, indicating that there is likely more on every student’s plate than the 

college courses they enroll in, and that this must be recognized and validated before 

educators can prepare a student for independent, self-directed learning.  “Learning in 

adulthood means becoming more self-directed and autonomous” (Merriam et al., 2007, p. 

120).  Therefore, a key goal in many adult learning theories is to help students become 

self-directed learners (Merriam et al., 2007).  Self-directed learning occurs when a 

student can plan, carry out, and evaluate their own learning experiences, with little or no 

help required from a teacher.  

Setting goals and activating prior knowledge often lead to self-direction, and are 

therefore imperative components of adult learning.  Adult learning theorist Gerald Grow 

created a model to help instructors understand how to best support learners on their 

journey to self-regulation.  By setting clear expectations and recognizing the prior 

knowledge with which students enter college courses, professors can help students move 

through Grow’s Staged Model of Self-Directed Learning (Merriam et al., 2007).  Though 
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Grow recognizes that most students enter higher education with some degree of intrinsic 

motivation, he posits that they likely start off by being fairly dependent upon the 

instructor as the “giver of information”.  As represented in Table 1 below, in this first 

stage, the instructor is the expert.  After some time, learners become more interested in 

the material and the instructor’s role is to help keep them interested and motivated 

(Merriam et al., 2007). In the next stage, learners begin to become more involved with 

the knowledge development and need the instructor to facilitate learning.  Finally, 

students can become self-directed and use the instructor as a consultant when needed 

(Merriam et al., 2007).  Therefore, by being clear in expectations, reminding students of 

their capabilities, and providing plenty of feedback and support, professors can help 

students become more confident and self-directed in their learning.   

A general limitation to contemporary and foundational research theories in 

education is that pedagogy models and research on pedagogical best practices typically 

examine students in K-12 environments.  Similarly, in most adult learning theories, 

students over the age of 25 are considered.  Thus, many college students between the 

ages of 18 and 24 appear to sometimes be neglected in the existing theories.  Many 

higher education researchers complain that typical pedagogical practices in K-12 settings  
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Table 1.  Grow’s Staged Model of Self-Directed Learning (reprinted from Merriam et al., 2007) 

are too juvenile for college students while many professors are unaware of adult learning 

theories (Kesici & Erdogan, 2009).  Thus, an appropriate balance of pedagogical best 

practices and an understanding of andragogy and adult learning must be examined and 

understood when working with this population of college learners.  However, connecting 

personal experiences to new learning, constructing knowledge based on experiences and 

social interactions, and engaging in frequent discourse and reflection are considered 

beneficial to all learners regardless of age (Dewey, 1938; Merriam et al., 2007; Schön, 

1983; Vygotsky, 1978; Von Glasersfeld, 2005). 

Adult Learning Theory and Connections to Eliciting Change Among Professors 

 While trying to elicit change among college mathematics professors, it is also 

important to understand adult learning theories and consider how professors may 

approach learning new techniques and potentially shifting their own teaching methods.  

Mathematics and business mathematics professors are expert mathematicians.  This 

expert status often leads to a blind spot, as they are not used to being told they need 

additional training in a field other than mathematics.  However, the majority of professors 

are not expert educators, so development in this area is needed in order to promote 

student learning (Anderson, 1967; Berliner, 2004; Bransford, 2000).  By understanding 

how adults process new information and tackle learning something for the first time, I 

believe I could help promote change in college business mathematics professors’ 

teaching practices. 

In the past, researchers have investigated the idea of mathematics professors 

having what is known as an “expert blind spot” (Nathan, Koedinger, & Alibali, 2003, p. 

645; Nathan & Petrosino, 2003).  This concept highlights the fact that once an educator is 
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a true expert of a concept, they often struggle to remember how novices are able to learn 

that concept.  Specifically:  

…educators with advanced subject-matter knowledge of a scholarly 

discipline tend to use the powerful organizing principles, formalisms, and 

methods of analysis that serve as the foundation of that discipline as guiding 

principles for their students’ conceptual development and instruction, rather 

than being guided by knowledge of the learning needs and developmental 

profiles of novices. (Nathan & Petrosino, 2003, p. 906) 

Unfortunately, educators such as college professors are often unaware of this blind spot 

and struggle to understand how students learn concepts which, to the experts, seem 

trivial.  Because the concepts and skills are so effortless for the experts, when students 

are unable to grasp these concepts, the experts tend to believe the student is simply 

incapable of understanding, rather than realizing that the way the subject is being 

presented may need to be re-examined (Nathan et al., 2001). 

 According to adult educator Malcolm Knowles (1988), adults need to understand 

why they are learning something new and also need to feel responsible for their decision 

whether to move forward with an innovative concept.  Further, the past experiences of 

these adult learners must be recognized and validated before they will be ready to learn 

new information.  Therefore, college mathematics professors must understand the 

importance and benefits of reflective, student-centered, constructivist teaching and 

learning practices.  They must also understand that it is ultimately their decision to 

implement changes in their own practice, as they are the only ones in charge of their 

classrooms (Knowles, 1988).  Further, many professors do have experience teaching 

(regardless of how effective that teaching may have been), which needs to be recognized 

before change can take place.  By respecting professors, validating their experiences, and 

acknowledging their autonomy, they are more likely to be open to new ideas and willing 

to try out new strategies (Knowles, 1988). 
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 Sociologist Jack Mezirow posits that adult learning is often a transformational 

process (Merriam et al., 2007).  According to his theory, learning is a three-phase 

process, which often begins with a “disorienting dilemma” that causes disruption and 

encourages change (Merriam et al., 2007, p. 105).  In the case of college mathematics 

education, the disorienting dilemma could be a presentation demonstrating the lack of 

student learning and retention in college mathematics.  Once the professors realize their 

students are often not truly learning under the current conditions, the transformational 

process would have room to begin. According to Mezirow, first, the professors must 

reflect on their own assumptions about teaching and learning in college; second, they 

must engage in discussions with others to validate their thoughts and contemplate change; 

finally, praxis must occur, where the professors take action to make change in their 

course and reflect on the outcomes (Merriam et al., 2007; Schön, 1983).  I believe that 

ongoing professional development with critical dialogue and time for individual and 

collegial reflection could allow for this transformational learning process among 

professors. 

 College professors, as with other adult learners, need to believe that what they are 

learning about matters:  teaching with a more student-centered, inquiry-based approach 

will help them become better at their jobs as instructors and will lead to more meaningful 

learning, and this needs to be made clear to them from the start.  Further, by having 

access to more teaching strategies and a better understanding of how students learn, they 

will be able to confront future situations that may arise in the classroom with more 

confidence and poise.  To get there, professors must realize that there is room to improve:  

they are not expert educators (Anderson, 1967; Bransford, 2000).  Knox’s Proficiency 

Theory states that adults are most motivated to learn when they recognize that their 

current level of proficiency is lower than their desired level of proficiency (Merriam et 

al., 2007).  Therefore, professors must have an opportunity to make small changes in their 

classroom and reflect on those changes as they move forward, with the support of other 
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faculty members or department chairs.  These small changes can help professors 

determine what will work for them and what methods they feel most successful with, but 

they must be given a space to reflect on these changes and discuss the impact they are 

seeing if they are to stay motivated to stick with these changes (Merriam et al., 2007; 

Schön, 1983).  Thus, frequent department meetings and professional development 

opportunities focusing on teaching, reflection, and learning would be helpful in 

encouraging college mathematics professors to implement more student-centered 

teaching practices.   

Personal Theoretical Framework 

 In addition to the published theories presented above, I am approaching this 

research and the corresponding analysis of the findings with a pragmatic, student-

centered framework.  As a pragmatic researcher, I seek to find answers to research 

questions that can be directly applied in educational settings (Creswell, 2014).  I believe a 

key purpose of research is to identify current problems and then discover solutions to 

those problems that can ultimately be used to better educational practices.  By running 

various statistical analyses, described in greater detail in chapter four, I hope to find 

regression models that can be used to inform students and instructors of the factors that 

can help predict and influence student success in business mathematics at the University 

of Rhode Island. 

Further, I believe the student plays a vital role in constructing his or her own 

learning; the student is not a receptacle upon which an instructor can transmit knowledge 

(Frankenstein, 1997; Piaget, 1964; Von Glasersfeld, 2005; Vygotsky, 1978).  Student-

centered, constructivist classrooms that allow students to reflect on their educational 

experiences are imperative to learning (Dewey, 1938; Hiebert & Grouws, 2007).  

Mathematics educator Catherine Fosnot (1996) emphasized that “teachers who base their 

practice on [student-centered learning] reject the notion that meaning can be passed on to 

learners via symbols or transmission, that learners can incorporate exact copies of teachers’ 
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understanding for their own use or... out of context” (p. ix).  College mathematics 

professors often use a behaviorist teaching approach, which requires students to learn 

mathematics out of context and in disjointed pieces (Frankenstein, 1997; Johnson, 2007; 

Mesa, 2012).  But “knowledge is not created and recreated in the fragmented forms in 

which most… subjects are presented.  Mathematics occurs in contexts, integrated with 

other knowledge of the world” (Frankenstein, 1997, p. 13).  Student-centered theorists 

argue that learners must be provided with opportunities to reflect on their views of 

mathematics and explore their experiences with and attitudes towards the subject if they are 

to be successful (Dewey, 1938; Fosnot & Perry, 2005; Hiebert & Grouws, 2007; Von 

Glasersfeld, 2005). 

As a student-centered educator, I believe there is constantly a plethora of thoughts 

and ideas occurring inside each student’s mind, which can greatly influence their learning.   

I believe professors should regularly reflect on their teaching practices and their perception 

of the student learning that occurred or may have failed to occur (Schön, 1983).  In my own 

practice, I try to implement the ALACT model of reflection after each lesson (Korthagen, 

2001). In this model, the following five steps are recommended:  (1) Action in the learning 

situation, (2) Looking back and reflecting on those actions, (3) Awareness of the main 

issues that may have occurred, (4) Construction of possible alternatives for the future, and 

(5) Trial of the alternatives (Korthagen, 2001).  As a result of working with my major 

professor, Kees de Groot, as both an undergraduate and graduate student, I have come to 

consider four main components of students’ actions in learning situations, based on the 

Gestalt model of therapy.  Gestalt therapy emphasizes the importance of reflection in 

practice (Perls, Hefferline, & Goodman, 1951).  In educational practice, while working 

with Kees, I try to reflect on what students may have been wanting, doing (or acting), 

feeling, and thinking during classes.  These may or may not coincide with the wanting, 

acting, thinking, and feeling of the instructor.  However, these components are essential to 
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consider as I reflect on each potential learning experience and plan for future learning 

opportunities. 

I believe that in order for learning to take place, the student’s personal thinking 

processes must be at the center of the learning experience (Dewey, 1938; Fosnot & Perry, 

2005; Frankenstein, 1997; Von Glasersfeld, 2005; Vygotsky, 1978).  As described in the 

review of literature that follows, current quantitative research that examines mathematics 

success for business students focuses on mathematics grades the students received, scores 

on standardized tests, and past GPAs (Bridgeman et al., 2008; Smith & Schumacher, 

2005).  Students are more than test scores.  Therefore, I have chosen to examine affective 

and cognitive variables that focus on the student, such as attitudes towards mathematics 

(Tapia, 1996), mathematical anxiety (Mahmood & Khatoon, 2011; Tobias & Weissbrod, 

1980, Tobias, 1987), perceived effectiveness of instructor (Cobb, 2005; Hiebert & 

Grouws, 2007; Mesa, 2012), time devoted to mathematics (Parker, 2005), and confidence 

(Hall & Ponton, 2005).   
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CHAPTER THREE:  
REVIEW OF RELATED LITERATURE 

In this chapter, I explain some of the most prominent principles, perceptions, and 

practices that currently exist in college mathematics.  I focus on the differences in these 

perceptions between professors and students.  I then analyze some of the differences 

commonly observed between mathematics in K-12 education and mathematics in college 

courses.  Finally, I describe and define each of the variables I investigated in this research 

and present my research questions, which frame the remainder of this study.   

Overview 

Education is the opportunity to construct meaning through inquiry, curiosity, 

personal connections, and reflection (Dewey, 1938). A student cannot be given 

knowledge.  Knowledge must be constructed through a combination of experience and 

frequent reflection (Dewey, 1938; Fosnot & Perry, 2005).  Therefore, the leading role in 

learning belongs to the student, not the instructor.  The role of an educator is to provide 

learners with a space to discuss experiences and consider how they might construct new 

knowledge from such experiences. Thus, in mathematics, it is important for students to 

have opportunities to discuss problems with their peers and then test a variety of 

problem-solving methods in authentic contexts.  In college classes, often after 12 years or 

more of formal mathematics education, students arrive with previously constructed 

perceptions about the subject.  Professors should recognize that these past experiences 

and opinions are likely to influence a student’s achievement and learning behavior in the 

course. 

A number of studies have examined the perceptions that college mathematics 

professors have about their incoming students (Blanchard, 2008; Corbishley & Truxaw, 

2010; Johnson, 2007; McDuffie & Graeber, 2003; Mesa, 2012; Zelkowski, 2011).  Their 

findings are described in the next section.  Furthermore, because of the recognized 

importance of mathematical literacy and competency in the working world, coupled with 

the general lack of preparedness that young adults in the United States seem to have to 
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apply mathematical concepts to everyday situations, the overall performance of college 

freshmen in mathematics courses has also been closely examined and described below 

(Corbishley & Truxaw, 2010; Frost et al., 2009; Long et al., 2009; Reisel et al., 2012; 

Zelkowski, 2011).   

Over the past two decades, some qualitative research has been devoted to student 

attitudes towards mathematics and their mathematical anxiety, as these factors seem to be 

linked to student achievement (Hall & Ponton, 2005; Kesici & Erdogan, 2009; Parker, 

2005; Tobias, 1987; Thiel et al., 2008).  Most literature focuses on the problems with the 

current conditions of mathematics in higher education (Ballard & Johnson, 2004; 

Blanchard, 2008; Corbishley & Truxaw, 2010; Davis & Shih, 2007; Hall & Ponton, 

2005; Johnson, 2007; Reisel et al., 2012).  A key weakness in the literature is the general 

lack of proposed solutions to these problems.  While some broad, systemic solutions are 

offered (Frost et al., 2009; Long et al., 2009; Thiel et al., 2008; Zelkowski, 2011), most 

emphasize K-12 teaching solutions; very few focus on proposed changes in higher 

education. 

 Most quantitative research on success in college mathematics has focused on test 

scores and demographics (Marcus, Fukawa-Connelly, Conklin, & Fey, 2008; Smith & 

Schumacher, 2005; Truell & Woosley, 2008).  Studies have shown that male students 

tend to outperform their female counterparts in mathematics and business courses 

(Berube & Glanz, 2008; Leaper, Farkus, & Brown, 2012; Smith & Schumacher, 2005) 

and affluent students tend to outperform students from inner-city and lower-income 

regions (Long et al., 2009).  Further, students who have higher mathematics SAT scores 

and high school GPAs are likely to earn higher grades in college mathematics courses 

(Bridgeman et al., 2008; Epstein, 2009; Long et al., 2009; Marcus et al., 2008; Sawyer, 

2013; Smith & Schumacher, 2005).  These results are not entirely surprising, and these 

factors fall out of the locus of control of both professors and students by the time they 

enter college courses. Little quantitative research exists that examines how affective and 
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cognitive factors influence success in business mathematics courses – a gap I hope to 

have started to address with this study. 

 In this review of related literature, as previewed above, I begin by examining 

current principles and practices in college mathematics courses.  I then analyze some of 

the key differences between high school and college mathematics and introduce the 

difference between college-readiness and what I call student-readiness.  Specifically, I 

examine how many researchers and practitioners focus on what students need to do to 

prepare for college (what I define as college-readiness) while few examine the 

importance of colleges being adequately prepared for new and current students (what I 

define as student-readiness).  Finally, I describe my rationale for choosing the variables 

examined in this study, specifically the significance of gender, mathematics SAT scores, 

high school GPA, scores on college placement exams, time devoted to mathematics 

outside of class, number of course absences, attitudes towards mathematics (especially 

self-efficacy and confidence), and mathematical anxiety in relation to success in college 

mathematics and business courses. 

Common Principles, Perceptions, and Practices in College Mathematics 

Professor Perceptions of Students 

A growing number of researchers have recently examined the perceptions and 

expectations that college professors tend to hold about their incoming freshmen 

(Blanchard, 2008; Corbishley & Truxaw, 2010; McDuffie & Graeber, 2003; Zelkowski, 

2011).  Generally, professors have reported feeling as though their incoming students are 

vastly unprepared for college-level mathematics courses.  This view of a lack of 

preparedness in higher-level mathematics is common for professors in economics and 

business departments, as well as in science, technology, engineering, and mathematics 

(STEM) fields (Ballard & Johnson, 2004; Blanchard, 2008; Reisel et al., 2012; Smith & 

Schumacher, 2005; Zelkowski, 2011).   
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To express their frustration, one large group of professors from the University of 

Washington wrote a formal complaint letter to the University President in 2008, claiming 

that the incoming freshmen were inappropriately unprepared for their mathematics-based 

courses at the university (Blanchard, 2008).  The professors complained that they felt 

forced to “dumb down” the material presented in order to accommodate the majority of 

freshmen, whom they found could not perform what the professors considered to be basic 

mathematics in engineering, economics, business, science, and mathematics courses.  

Professors at colleges and universities across the nation often share these frustrations 

(Ballard & Johnson, 2004; McDuffie & Graeber, 2003; Reisel et al., 2012; Zelkowski, 

2011). 

In one study, designed to examine students’ perceived mathematical competency 

and college-readiness, high school mathematics teacher Jeffrey Corbishley and 

mathematics professor Mary Truxaw (2010) asked 22 college mathematics professors at 

the University of Connecticut to rate various aspects of their students’ mathematical 

ability on a five-point scale, where one indicated very low mathematical ability and five 

indicated high mathematical ability.  The mean for overall perceived ability was a 2.17 

out of 5 (Corbishley & Truxaw, 2010). In terms of having the specific ability to reason 

and generalize, faculty rated the incoming freshmen a mean of 1.7 on the same five-point 

scale.  This is a very low perception of ability to reason, and most mathematics professors 

surveyed considered these reasoning skills to be amongst the most important for 

incoming freshmen to possess.  College professors specifically noted students’ inabilities 

to use and understand fractions, work with positive and negative values, perform 

arithmetic, and recall multiplication tables without a calculator (Corbishley & Truxaw, 

2010).   

According to a recent study by mathematics education specialist and researcher 

Vilma Mesa (2012), however, mathematics faculty members may have misaligned 

perceptions of their students’ expectations in mathematics.  Mesa surveyed 25 professors 
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and 777 students at a large, suburban community college and discovered that professors, 

in general, had “a more negative perception of students’ self-concept in mathematics than 

their students did” (Mesa, 2012, p. 61).  Professors tended to believe that their freshmen 

did not care whether they understood the material that was being presented to them, as 

long as they were able to earn a good grade.  Mesa (2012) posited, however, that students 

believed the grades they earned on exams were more important to their professors than 

any other coursework, primarily because the exams were generally worth such a large 

percentage of the overall grade. Thus, perhaps students only paid more attention to their 

scores when they realized that what their professors seemed to care most about were 

grades. This grade-influenced focus and belief was most likely to appear in 

developmental or freshman-level mathematics courses, rather than more advanced 

courses (Mesa, 2012). 

Mathematics professor Pete Johnson (2007) performed a longitudinal, qualitative 

study analyzing developmental mathematics courses. He discovered that over one third of 

all college students in the United States were enrolled in what have been designated as 

“remedial” or “developmental” mathematics courses, indicating that the material 

presented in the courses was supposed to have been covered in a typical high school 

curriculum.  Because the material presented in these courses is not considered to be 

“college-level,” students often do not receive college credit for taking these courses 

(DeBerard, Julka, & Spielsman, 2004; Hall & Ponton, 2005; Johnson, 2007; Mesa 2012; 

Zelkowski, 2011).  Students become frustrated when they enroll in and pay for courses 

covering material they were exposed to previously in high school, but often still struggle 

to successfully complete these courses (Johnson, 2007). 

Many professors believe that the students enrolled in remedial courses are not 

ready for college and therefore should not be enrolled at the university.  Full-time 

professors often avoid teaching developmental or freshmen-level courses, as they are 

usually larger in class size and the students who take these courses tend to submit lower 
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teacher evaluation scores (J. Baglama, personal communication, January 23, 2015; Barth, 

Liu, & Wells, 2009; Feldman, 1984; Guder, Malliaris, & Jalilvand, 2011).  Since senior 

faculty members have more input regarding the classes they teach, graduate students or 

adjunct faculty members generally teach these developmental courses.  In the business 

department at the University of Rhode Island, for example, lecturers or non-tenured track 

faculty members typically teach the freshmen-level courses. General outlooks on 

teaching responsibilities in the eyes of professors are explored in more detail in the 

following section. 

Professor Perceptions of Teaching 

Dr. Amy McDuffie from Washington State University and Anna Graeber from the 

University of Maryland (2003) discovered that many college professors – especially in 

mathematics – prefer to have complete control over what they are teaching and therefore 

do not like to deviate from the syllabus, despite levels of student interest or understanding 

of the material.  They often claim they have “too much curriculum to cover” to be 

bothered with time-consuming projects or inquiry-based learning	(DeBerard et al., 2004, 

p. 14).  However, many college freshmen come into a mathematics course expecting to 

receive personal attention and build relationships with their peers and instructors during 

class, complementary to what they experienced in middle school and high school, which 

most college professors are either not adequately prepared to provide (McDuffie & 

Graeber, 2003; Nathan & Petrosino, 2003), or are not willing to provide (DeBerard et al., 

2004; Hagedorn et al., 1999).   

Many professors teach with the intent to prepare students for more advanced, 

subsequent courses, especially in mathematics (Mathematical Association of America, 

2012).  They often believe the purpose of their course is to ensure students have the 

information and skills they need to continue in mathematics, as if each student has the 

goal of becoming an expert mathematician.  However, nearly all students enrolled in 

business mathematics courses are not seeking a future career as a mathematician, but that 
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of an accountant, financial advisor, marketer, or other business-related occupation (Barth 

et al., 2009). Despite the high failure rates in college mathematics courses, many 

professors go over the same concept, in exactly the same way, over and over again, and 

expect their students to get more out of it each time (Anderson, 1967; Nathan et al., 

2001).  If students are not understanding nor retaining the material, I wonder: are the 

instructors actually “covering” those concepts?  More importantly, what is the point of 

simply covering mathematical skills and concepts; shouldn’t mathematics educators 

instead be trying to uncover the beauty and relevance of mathematics to students 

(Hawkins, 2000, p. 79, as cited in Duckworth, 2006, p. 7)?   

Unfortunately, many professors generally do not find teaching to be a priority in 

their professions (DeBerard et al., 2004; McDuffie & Graeber, 2003; Thiel et al., 2008).  

A limitation in the current higher educational system is that promotion and tenure 

requirements at most universities across the United States focus on professors’ research 

efforts and innovative publications, not on their teaching practices.  Some professors 

believe that “teaching effectiveness, not publications, should be the primary criterion for 

promotion,” but until that is the case, teaching will likely remain secondary to their 

research (McDuffie & Graeber, 2003, p. 332).  Of course, some mathematics professors 

are still extremely passionate about their teaching practices and have a deep desire to 

improve (McDuffie & Graeber, 2003).   

What the contemporary research fails to recognize is that with little extrinsic 

motivation to become a better instructor, college mathematics professors must often rely 

on intrinsic motivation if they wish to improve their teaching practices.  Nothing in their 

degree programs explicitly prepares them for effective teaching.  They are expected to 

learn and master this complex skill on their own.  A “desire to be excellent” is a key 

component to becoming an expert teacher, but often, the focus on research pushes 

professors towards a desire to be excellent researchers rather than expert educators 

(Berliner, 2004, p. 15; McDuffie & Graeber, 2003; Nathan & Petrosino, 2003).  Expertise 
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takes time and sincere effort to gain (Berliner, 2004; Nathan et al., 2001).  Therefore, 

college mathematics professors tend to spend more time honing in on the domain that 

they are already considered to be an “expert” in – mathematics – rather than focusing on 

their less-expert (perhaps even novice) status as an educator. 

 One problem with having content experts teach college-level mathematics or 

business mathematics courses is that being an expert mathematician does not indicate that 

one is qualified to teach mathematics (Anderson, 1967; Bransford, 2000; Gess-Newsome, 

Southerland, Johnston, & Woodbury, 2003; Martin-Connell, 2014; Nathan et al., 2001; 

Nathan & Petrosino, 2003).  One of the biggest challenges in college mathematics 

instruction is professors’ general lack of pedagogical knowledge and instructional 

training.  Most tenured faculty members in business and STEM departments hold a 

doctorate degree in their field.  However, only a handful of college professors outside of 

the education field hold some sort of teaching certificate.  In fact, many receive no 

official pedagogical training at all (Anderson, 1967; Nathan et al., 2001).  Effectively 

developing and presenting material to college freshmen requires pedagogical knowledge 

and a deep understanding of learning and developmental processes (Hofer & Pintrich, 

1997; McDuffie & Graeber, 2002; Nathan & Petrosino, 2003; Vygotsky, 1978).  Just as 

students need to prepare themselves (and receive support to help them prepare) for 

college, colleges need to ensure the institution and its faculty members are prepared for 

students.  Professors, despite their level of expertise in the content, may not understand 

how to articulate mathematical concepts to their students: “no academic degree in itself 

qualifies an individual to teach effectively at any level unless this preparation is 

accompanied by a genuine interest in teaching” (Anderson, 1967, p. 14).   

With little to no training to show them how to teach effectively, professors are 

often forced to rely on the practical teaching knowledge they gain by being in front of a 

group of students.  This is another key weakness of the current higher education teaching 

system.  Many college mathematics professors resort to lecturing; even knowing that it 
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may not be the most effective delivery method, because it is what they are used to and 

comfortable with (Gess-Newsome et al., 2003; Nathan & Petrosino, 2003).  It is not that 

college professors do not want their students to learn and be successful; it is that they 

sometimes do not know how. Professors were often able to find success in lecture-based 

mathematics courses themselves, so they assume all (or at least most) students will be 

able to learn and succeed this way as well.  They often believe that they can simply give 

information to their students to replicate, and that this mimicking and replication will 

somehow result in learning.   

However, “knowing how experts… behave does not help in getting someone to 

that point… simply copying expertise alone is likely to result in an inappropriate 

conservatism and lack of innovation” (Munby, Russell, & Martin, 1997, p. 890). College 

mathematics classrooms must be redesigned and college professors must be made aware 

of various teaching strategies if the goal is to provide learning opportunities to all 

students.  Incoming college freshmen are often criticized for not having the mathematical 

background necessary for professors to teach courses the way they are accustomed to 

teaching them (Blanchard, 2008; DeBerard et al., 2004).  Rather than changing their 

course or altering their teaching approach to meet the needs of these new students, faculty 

members currently tend to lower their expectations or fail a higher percentage of 

freshmen (Corbishley & Truxaw, 2010; Thiel et al., 2008).  These “solutions” place the 

blame on the students and do not do anything to actually help students or professors 

learn.   

Reflection is a cornerstone to all educational experiences.  Not only is it vital that 

students are provided with a time and place to reflect, but it is equally important for 

professors to be reflective practitioners (Schön, 1983).  Influential theorist Donald Schön 

defined the importance of both “reflection-on-action”, where practitioners reflect on their 

work after-the-fact, and “reflection-in-action”, where practitioners reflect and adapt in the 

moment (Ferry & Ross-Gordon, 1998, p. 98; Imm, Fosnot, Dolk, Jacob, & Stylianou, 2012; 
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Schön, 1983).  Both of these skills are essential for an educator to be considered a true 

expert.  Many practitioners will reflect on their actions, but reflecting in action is a more 

challenging task and takes sincere dedication and practice (Ferry & Ross-Gordon, 1998; 

Imm et al., 2012; Schön, 1983).  Expert practitioners should not only be able to plan for 

future situations, but should also be able to change their plans at any time based on arising 

needs.  Schön warned practitioners that simply gaining experience is not enough; without 

reflection, the experience is not meaningful and fails to lead to improvement in practice.  

Following Dewey, Schön understood that the “significance of experience is realized [only] 

in reflection” (Martin-Connell, 2014, p. 14). 

Reflection is not a simple or straightforward process:  it requires time and 

dedication, especially in the beginning. Schön argues that even if college mathematics 

and business mathematics professors were to recognize their expert blind spots and 

become expert educators, unlike mathematics which is fairly stable as a content area, 

education and pedagogical best practices change with each new group of students, so 

constant reflection and adaptation are required (Schön, 1983).  However, reflection can 

be uncomfortable for many experts as it can highlight mistakes and shortcomings.  Schön 

warns that often when professors (as well as students) reflect, “they tend to focus on the 

mismatch of traditional patterns of practice and knowledge to features of the practical 

situation – complexity, uncertainty, instability, uniqueness, and value conflict – of whose 

importance they are becoming increasingly aware” (Schön, 1983, p. 18).   

Some barriers to reflection exist in higher education settings.  For example, as an 

institutional barrier, most professors teach in isolation and have few direct opportunities 

to discuss their teaching with other professors or incentives to reflect on their practices 

(Jaeger, 2013).  Many spend their time teaching and planning for instruction alone and 

use social opportunities to discuss research opportunities.  Professors often believe their 

responsibility should be “doing” rather than “thinking about doing”, which further 

prevents many of them from reflecting on their teaching practices (Jaeger, 2013, p. 97).   
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While there has been little research performed on business mathematics specifically, 

those studies that have analyzed business mathematics have not indicated differences in 

teaching practices from those of other mathematics professors (Pritchard, Saccucci, & 

Potter, 2010; Truell & Woolsey, 2008). 

Current Practices in Curriculum 

In considering new policies for higher education, one must recognize that 

instruction is not the only problem in college mathematics and business education.  The 

current curriculum at many colleges and universities does not seem to be designed in a 

way that is intended to enhance student learning (Gess-Newsome et al., 2003; Johnson, 

2007).  Researcher and educator Mercedes McGowen (2006) found that “the intended 

curriculum – the course content as outlined in the syllabus… is not necessarily the 

implemented curriculum – what is actually taught” in freshmen level courses because of 

the general neglect for students’ past experiences and ideas about the subject (p. 22, 

emphasis in original).  In many institutions of higher education, the current mathematics 

curriculum (including the business mathematics curriculum) focuses on unconnected 

skills development and abstract concept memorization.  This memorization and 

replication practice is generally in place to serve needs of professors in more advanced, 

subsequent courses, such as calculus (Mathematical Association of America, 2012).  This 

is also true in entry-level business mathematics courses, which serve to prepare business 

majors for business calculus or advanced business statistics courses.  Even if students 

master these skills, they generally do not know when to use them in real situations 

outside of the classroom, nor do they accurately recall the skills in subsequent courses.   

Many mathematics educators and business educators, at some point in their 

careers, encounter the question: “Am I ever going to use this?” from their students. 

Researcher Pete Johnson (2007) discovered that the honest answer to this question, in the 

majority of freshmen-level college mathematics courses, should be “no, you likely won’t 

ever use this; unless you are a math major.”  Students not majoring in mathematics were 



 40 

found to rarely, if ever, use what was taught in their college mathematics courses in 

future courses or in entry-level occupations.  If they did need the skills, they were 

retaught them.  How can our society allow educators to continue presenting material that 

is disconnected from actual application and irrelevant to the majority of the students they 

teach?   

In business mathematics, professors and administrators sometimes struggle to 

effectively measure the quality of the curriculum and instruction (Pritchard et al., 2010).  

Using twelve semesters of data consisting of student evaluations of teaching, New 

England professors Robert Pritchard, Michael Saccucci, and Gregory Potter (2010) found 

that quality and effectiveness of the instruction in business courses did not improve over 

time, though professors gained more experience in teaching each year.  This is the case at 

many business colleges, though the Association to Advance Collegiate Schools of 

Buisness (AACSB) requires accredited institutions “to demonstrate continuous 

improvement in teaching within their colleges of business” (Association to Advance 

Collegiate Schools of Business, 2015; Pritchard et al., 2010, p. 280).  Professors often 

argue that the single measurement typically used (student evaluations of teaching, which 

are generally administered at the end of the course) are inadequate in measuring 

effectiveness and quality.  Thus, it seems business mathematics courses may not currently 

be sufficiently measured for the effectiveness of their curriculum or quality of instruction, 

though no alternatives are being offered (Pritchard et al., 2010; Whitworth, Price, & 

Randall, 2002).   

Further, some professors claim that students score professors more favorably on 

the evaluations if the course is easier, the instructor holds lower expectations, or if the 

instructor cancels class frequently (Barth et al., 2009; Guder et al., 2011). Professors 

Michael Barth, Jun Liu, and William Wells reported that “there often is a perception that 

rigorous academic standards lower student evaluations of teaching” (Barth et al., 2009, p. 

94).  They found that business courses that were heavy in quantitative analysis and 
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computation, such as business calculus, economics, accounting, and finance, were taught 

by professors who earned lower evaluations from students.  However, students also 

earned significantly lower grades in these courses than in their qualitative business 

courses, such as marketing and management (Barth et al., 2009).  This begs the question:  

do low course grades lead to lower instructor evaluation scores, or are these courses 

taught by ill-equipped instructors deserving of low evaluation scores, and thus 

simultaneously leading to lower grades?  Are students coming in with negative attitudes 

towards mathematics and therefore the quantitative business instructors are destined to be 

hated and deemed ineffective by their students, regardless of their efforts?  Barth, Liu, 

and Wells (2009) do not attempt to examine any causal relationships in their research, but 

they indicate that it seems little is being done to improve teaching quality or curriculum 

effectiveness in business courses.   

The curriculum in business mathematics courses cannot be examined without the 

role of the instructor and vice versa.  Students need an instructor whom they can trust to 

effectively deliver the material they will need in future courses and in their careers.  

According to the AACSB (2015), college business education must provide students with 

the quantitative skills and interpretations they may need in order to proceed in various 

business situations with confidence and understanding.  Business educator James Okoro 

believes, “education programs succeed only to the extent to which the quality of the 

personnel engaged in the education process carry out their individual responisbilities… 

the success of any curriculum is directly related to the qualification of the [instructor]” 

(Okoro, 2014, p. 575-576).  

An additional element where professors in mathematics and business departments 

need to focus attention and effort is the perspectives about learning mathematics that 

students bring into their courses from prior experiences in K-12 schooling.  While much 

of the current literature focuses on what students could do to better prepare themselves 

for college and the expectations of their professors (increasing their college-readiness), 
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there is little discussion on what I have referred to as student-readiness, or how professors 

could better understand the perspectives and needs of their students.  I examine this 

concept more in the following section. 

Student Perspectives on College Mathematics 

Overall, professors tend to believe freshmen are unprepared for college 

mathematics.  Some college professors have reported feeling as though students “get by 

in high school without doing much mathematics… and this learned trait in high school 

carries over” (Zelkowski, 2011, p. 29).  So, how do incoming students view mathematics 

in higher education?  How are they impacted by the current state of mathematics 

education and the debate on college-readiness? One limitation of the current research is 

that students are often not included in discussions on what it means to be college-ready, 

though they are the ones most impacted by the construct.  However, a growing body of 

research suggests that students are entering college apprehensive of their ability to be 

successful, especially in mathematics (Hall & Ponton, 2005; Kesici & Erdogan, 2009; 

Tobias, 1987). 

In 2005, less than 25% of high school seniors performed at or above proficiency 

in mathematics on the National Assessment of Educational Progress (NAEP) (Corbishley 

& Truxaw, 2010).  Yet, many of the “non-proficient” students were still entering college 

the following year.  In a quantitative study, mathematics education professor Dr. Jeremy 

Zelkowski (2011) discovered that 85% of students who completed what were considered 

to be the minimum graduation requirements for high school were told that they would 

need remediation in college, or were predicted to fail an entry-level college mathematics 

course.  These students were consequentially much less likely to earn a college degree.  

Therefore, there may be a vast difference between students who are “college eligible” (or 

have met the minimum mathematics requirements for high school) and students who 

actually feel “college ready” (Zelkowski, 2011, p. 28, emphasis added).  Students (and 

instructors) are often unaware of the difference between these two constructs.  In the 
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current K-16 educational system, completing all of the graduation requirements for high 

school does not necessarily seem to indicate that a student is well prepared for college.  

Freshmen mathematics and business mathematics courses often “move along at a pace 

many students find impossible to maintain” (McGowen, 2006, p. 22).  Besides academic 

competency, students must also be equipped with effective study skills, a personal, 

effective time management system, and a strong understanding of self.  They must 

recognize how they learn best and understand how to effectively self-assess their abilities 

and reflect on their learning goals and outcomes in order to be successful in college.  

However, these vital skills are generally not explicitly taught in high schools (Frost et al., 

2009).  

Zelkowski (2011) also found a discrepancy between the beliefs of high school 

mathematics teachers and the beliefs of college mathematics professors when it came to 

how prepared students were for college (college-readiness).  Specifically, 37% of high 

school mathematics teachers reported feeling that their college-going students were very 

well prepared for college, but only 4% of college professors agreed (Zelkowski, 2011).  

Neither of these percentages is very high, and they represent vastly different expectations 

of students.  On the other side of this argument, 32% of college mathematics professors 

felt students were not at all prepared for college, though only 9% of high school teachers 

agreed (Zelkowski, 2011).  No one seems to be asking whether colleges are properly 

prepared for students (student-readiness). 

These messages get passed on to students.  In high school, students believe they 

are being prepared for college and trust when their teachers tell them they are college-

ready.  In college, however, professors often have a different connotation of readiness, 

and students may feel overwhelmed by the unanticipated differences in teaching and 

learning practices (Frost et al., 2009; Long et al., 2009).  In my opinion, this indicates that 

colleges are not adequately prepared to meet the needs of incoming students.  College 

professors are frequently disappointed by the general lack of preparedness they see with 



 44 

freshmen, and students recognize and often internalize this disappointment, damaging 

their self-efficacy and increasing anxiety, which can lower their chances of being able to 

find success in mathematics courses (Corbishley & Truxaw, 2010; Hall & Ponton, 2005; 

Tobias, 1987). Therefore, self-efficacy, anxiety levels, and past experiences are specific 

readiness factors I chose to examine in this research, and are described in further detail 

below. 

Students’ Understanding of Their Readiness for College Mathematics 

According to Corbishley and Truxaw’s research (2010), the vast majority of 

entering college freshmen at the University of Connecticut during the 2010 school year 

reported that they felt unprepared for the college workload.  Only 9% of students 

surveyed reported feeling prepared for their college courses in general.  Only 6% said 

that they felt prepared specifically for their college mathematics courses (Corbishley & 

Truxaw, 2010).  In a similar survey of freshmen at the University of Louisville, over 40% 

of students reported believing that their college mathematics courses were too 

demanding.  Specifically, they noted that their professors “frequently, usually, or always” 

expected them to know things that they were never previously exposed to in high school 

(Barnes et al., 2004, p. 27). 

Instead of problem solving, meaning making, knowledge construction, and real 

world applications, college freshmen in mathematics and business mathematics courses 

are often asked to do routine practice and formula memorization, generally with little or 

no ties to the importance of these skills in their actual lives. This often contrasts with how 

students approach learning in elementary and secondary education settings (Frost et al., 

2009; McGowen, 2006; Zelkowski, 2011).  Few studies have examined ways of 

eliminating this behaviorist teaching approach in college courses or the negative effects 

of this approach.  Without personal connections and opportunities for exploratory 

problem solving, students are unlikely to make sense of the importance of mathematics in 

their lives.   
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Students start to develop attitudes towards mathematics and beliefs about its value 

long before entering college.  Unfortunately, many children grow up around adults and 

peers who do not enjoy (or even fear) mathematics (Blaszczynski, 2001; Tobias, 1987).  

Many students believe from an early age that they will never be good at mathematics 

because their parents were not good at mathematics, or they claim to hate the subject and 

can only justify the belief with the idea that “I’ve just always hated math” or “I’m not 

good at math” (Blaszczynski, 2011, p. 3; McGowen, 2006).  When students grow up in a 

social environment that promotes a strong dislike of mathematics, they often fabricate 

justifications as to why they believe it has no value or relevance in their lives (Vygotsky, 

1978).  These cultural justifications and social memories lead to strong beliefs about 

mathematics that are difficult to change (McRaney, 2011; Okoro, 2014; Sjøberg, 2010). 

Because these notions are socially influenced, it is often easier to think about 

mathematics in a way that is considered to be socially and culturally acceptable 

(McRaney, 2011; Von Glasersfeld, 2005; Vygotsky, 1978).  Unfortunately, the American 

culture has constructed a relatively negative understanding of the usefulness of 

mathematics that is passed on to our children, leading many to believe they will never be 

ready for or successful in college mathematics (Corbishley & Truxaw, 2010; McGowen, 

2006). 

Students in college mathematics courses also report differences in their 

experiences based on the instructor (Hiebert & Grouws, 2007; Johnson, 2007; McDuffie 

& Graeber, 2003; Okoro, 2014).  Two students with similar mathematical skill sets taking 

the exact same course may have extremely diverse success levels under different 

professors (Okoro, 2014).  Thus, it is important to examine the role of the instructor when 

investigating student success in college.  Specifically, “the nature of classroom 

mathematics teaching significantly affects the nature and level of students learning” 

(Hiebert & Grouws, 2007, p. 371).  Students may experience different opportunities to 

learn under different instructors in high school and in college.  Unlike many high school 
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teachers, however, with the professional freedom granted to most post-secondary 

educators, students may not be aware that different college professors may teach the same 

course very differently.  This is only one of many differences between high school and 

college courses.  In the next section, I describe some of the key changes students face 

when making this transition to college. 

K-12 Mathematics versus College Mathematics:  An Overview 

Unlike other transitions throughout a student’s life, the transition from high 

school to college requires a young person to undergo many of the most challenging 

changes that they may ever face, all within an extremely short period of time.  Two 

significant changes include changes in lifestyle (living with roommates, sudden distance 

from parents and family, new sleeping patterns, different eating habits, etc.) and changes 

in environment (campus, dorm, community, classrooms, friends, teachers, etc.).  See the 

Venn diagram below for a visual representation of these changes (Figure 2).  These 

changes are often pointed out to students during college seminars and orientation 

sessions. What seems to rarely be examined in high school, or thoroughly explained to 

students as they enter college, is the likely change in academic rigor that they will 

encounter (Zelkowski, 2011).   

 

 

 

 

 

 

 
Figure 2.  Some of the Changes Faced in Students’ Transition to College 
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Any one of these changes could cause a student severe stress.  However, with all 

of these obstacles presented to students at the same time, the challenge that they must 

face in this transition from high school to college is extremely intense.  While some high 

school teachers seem to use scare tactics to warn students that certain behaviors will not 

be acceptable in college, specific academic expectations are seldom explained or 

practiced (Frost et al., 2009; Zelkowski, 2011).  Many college professors, for example, 

expect students to learn certain content independently.  This sudden, usually 

unanticipated, academic change forces students to not only quickly understand how they 

learn best but also how to accommodate their personal learning needs, often for the first 

time, in preparation for class.  

From a Name to a Number 

High school and middle school mathematics courses vary across the nation, 

though certain practices seem to be common in many schools (Davis & Shih, 2007; Frost 

et al., 2009; Long et al., 2009; Zelkowski, 2011).  In many elementary and middle school 

classrooms, students are exposed to “open-ended investigations, explication of 

procedures, completed examples, and… problems” for students to try on their own (Davis 

& Shih, 2007, p. 339).  K-12 teachers often utilize activities that involve technology and 

interactive group work, and present creative, flexible applications (such as projects) to 

serve as assessment methods (Davis & Shih, 2007; Frost et al., 2009). Many teachers in 

elementary and secondary settings also try to ensure students have time to practice 

mathematical concepts during class, not just at home for homework.  Further, behavioral 

issues are frequently reported in high schools (Alexander, Mundrake, & Brown, 2009; 

Frost et al., 2009; Zelkowski, 2011). These trends differ greatly from most college 

mathematics courses, where few behavioral issues are reported and nearly all practice is 

expected to be completed outside of class, independently.   

Many college freshmen have reported in personal communications with me that 

one of the main reasons the transition from high school to college is so challenging for 
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them is because they feel as though they have gone from being a name to a number.  This 

is an analogy I have heard over and over as both an undergraduate student and now as an 

educator in college.  Students frequently feel as though everyone knew them in high 

school and, with small mathematics classes, their teachers and peers noticed if they were 

absent, upset, or confused.  Many of these students enter college courses expecting a 

similar sense of community where their voices and faces are known and appreciated.  

However, often freshmen mathematics courses consist of lectures with well over 50 

students per class (Hall & Ponton, 2005; Reisel et al., 2012).  At URI, freshmen 

mathematics courses generally range from 48-180 students per section (J. Baglama, 

personal communication, March 25, 2015).  In freshmen business mathematics courses at 

URI, class sizes are typically between 45 and 60 students.  This is fairly representative of 

freshmen class sizes nationwide, though upper-level courses have fewer students (Okoro, 

2014).  The professor of such large sections is unlikely to know individual student names 

or take attendance and students are likely unprepared for such a dramatic shift in 

classroom culture. 

College mathematics and business professors often believe that the majority of 

their incoming freshmen are already independent, intrinsically motivated, self-directed 

learners (Davis & Shih, 2007).  However, educational psychologists Barbara Hofer and 

Paul Pintrich posit that many students in college believe that there can only be one 

“correct” answer in mathematics and, above all else, “it is important to be able to get the 

answer quickly” (Hofer & Pintrich, 1997, p. 126).  They may believe that mathematical 

knowledge is external and must be given to them directly by the instructor; it cannot be 

constructed or even understood independently. Therefore, it would seem likely that 

students may also believe that the only meaningful knowledge comes from whatever the 

professor tells them – not what they may be able to construct or develop on their own.  

By lecturing and assigning problems that require independent work outside of class, 

professors assume freshmen are developmentally prepared to:  independently learn 
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material that is not covered directly in the course, use various critical thinking skills to 

build connections among these concepts, and trust themselves enough to start 

constructing their own meanings.  After working closely with their peers and receiving 

instructional support in high school mathematics, are these students developmentally 

ready for such a sudden shift towards independence?   Are colleges prepared to support 

students with these needs? 

A general lack of student voice and engagement in college mathematics and 

business mathematics courses may cause many students to lose interest in mathematics 

(Thiel et al., 2008).  However, this seems to be common practice in higher education.  At 

the University of Chicago, 93% of college mathematics professors reported using lecture 

most or all of the time in the classroom, 77% said they rarely or never asked their 

students to reflect on or write about mathematics, and 63% said they rarely or never 

asked students to work in groups during class (Davis & Shih, 2007).  This lecture-based, 

teacher-centered style of instruction is a common weakness in higher education, and is 

often very different from what students were exposed to in their elementary school, 

middle school, and high school mathematics courses. Furthermore, these practices may 

not be conducive to student learning (Fosnot & Perry, 2005; Vygotsky, 1978), as: 

1. Students are typically more familiar with an active learning model from 

their K-12 experiences and thus may struggle to learn with new teaching 

practices and classroom climates in place (Long et al., 2009). 

2. Most students learn best through discourse and connections made to 

personal experiences (Cobb, 2005; Dewey, 1938; Von Glasersfeld, 2005; 

Vygotsky, 1978).   

From Personalized Construction to Rote Replication 

Educator Paul Cobb (2005), a contemporary social constructivist, defines 

mathematical learning as the “process of active construction that occurs when [students] 

engage in classroom mathematical practices, frequently while interacting with others” (p. 
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41).  Many (though certainly not all) K-12 teachers allow their students to develop new 

strategies and work in groups to solve problems while the teacher supports new 

discoveries, answers questions, and poses innovative, deeper questions, especially in 

elementary grades (Davis & Shih, 2007; Zelkowski, 2011).  Many certified educators 

agree that encouraging classroom discourse, asking questions, and providing some form 

of differentiated instruction when needed helps facilitate student learning (Cobb, 2005; 

Von Glasersfeld, 2005; Vygotsky, 1978).  Yet these practices are absent in many college 

mathematics and business mathematics classrooms. The majority of college mathematics 

and business mathematics courses are lectures:  the professor talks at students while very 

little learner engagement or peer interaction occur (Davis & Shih, 2007; McGowen, 

2006; Whitworth et al., 2002).   

Frequently, “high school teachers [accuse] college faculty of using archaic 

instructional approaches [and] college faculty blame high school teachers for failing to... 

teach mathematics content” (Frost et al., 2009, p. 228).  Specifically, college professors 

often accuse high school teachers of coddling students and holding them to low 

expectations, therefore unsuccessfully preparing them for more advanced, college-level 

work.  High school teachers claim professors do not care about the individual student and 

put more effort into their research than their teaching.  Regardless of the truths that may 

exist in these notions, this ineffective blame game has continued over the last few 

decades as instructors at different curricular levels struggle to agree on the true purpose 

of mathematics education and simultaneously fail to communicate effectively across K-

16 environments.  Communication between secondary and post-secondary educators is 

limited across the United States (Bilsky, 2011).  As these two groups blame one another, 

the students become the victims:  stress develops as students struggle to abandon the 

understanding they gained about what it meant to learn mathematics in high school and 

are forced to develop new understandings of what learning mathematics looks like in 

college.   
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The following table (Table 2) summarizes, in very general terms, my 

understanding of how many students, and instructors alike, tend to view the overall 

differences between high school and college-level mathematics courses (Davis & Shih, 

2007; Frost et al., 2009; Long et al., 2009; Zelkowski, 2011).  While these characteristics 

are not the same in every course, or in every school, or with every student/instructor, this 

table provides a general overview of the vast differences that are likely to exist.  With 

these broad differences in mind, it is important to consider ways to help students 

successfully make the transition to college and learn how to be successful in college 

mathematics and business mathematics courses. 

 
 High School College 

Environment 
Warm and inviting 

Few students per class 
Personalized 

Student-centered 

Cold and impersonal 
Many students per class 

Anonymous 
Teacher-centered 

Role of Instructor 
Focus on pedagogy 

Facilitator 
Co-constructor of information 

Focus on content 
Lecturer 

Giver of information 

Role of Students 
Explore/ask questions 

Participant 
Co-constructor of information 

Accept/answer questions 
Observer 

Receiver/replicator of information 

 Role of Assessment 
Assess to provide feedback  
Assess to evaluate teaching 

Learning occurs in class 

Assess to judge ability 
Assess to “weed out” weak links  

Learning occurs out of class 

 
Table 2. Differences Between High School and College Mathematics Courses  
(Davis & Shih, 2007; Frost et al., 2009; Long et al., 2009; Zelkowski, 2011) 

College Readiness  

College readiness is difficult to define.  With Common Core State Standards 

(Common Core State Standards Initiative, 2015) and President Obama’s Race to the Top 

(U.S. Department of Education, 2009) initiatives being implemented across the nation, 

there has been a recent push to more clearly define this concept.  For some, the notion of 
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college readiness implies that the minimum high school graduation requirements have 

been met (Zelkowski, 2011).  For others, it involves the additional attainment of study 

skills and research abilities (Conley, 2007).  With multiple beliefs about what it means to 

be college-ready, there is also great disagreement on whether high schools are currently 

preparing students for college (Zelkowski, 2011).  

This discrepancy on what college readiness means is a limitation to the current 

literature.  However, after researching definitions and comparing those to my own 

connotations of college-readiness as it affects students in business mathematics courses, I 

found a definition that I used to frame my construct of this concept for the purposes of 

my study.  The definition of college-readiness I used is “the level of preparation a student 

needs in order to enroll and succeed – without remediation – in a credit-bearing general 

education course at a postsecondary institution” (Conley, 2007, p. 5).  My only hesitation 

with this definition is that it puts all of the responsibility on the student, and no 

responsibility on the institution where the student will attend.  Therefore, I believe it is 

appropriate to also discuss student-readiness, which I will define as the level of 

preparation that college faculty, staff members, and the institution in general need in 

order to ensure students are able to enroll and succeed in credit-bearing courses with the 

appropriate instruction and support.  I continue the discussion on college-readiness versus 

student-readiness in chapter six where I discuss the implications of the findings from this 

study.  For now, I turn to the history of student access to higher education and readiness 

for college. 

College Readiness Overview 

Earning a college degree has recently become a necessity for many careers in the 

United States and abroad (Brock, 2010; Conley, 2007).  Over the last few decades, the 

number of Americans seeking a degree from an institution of higher education has risen 

exponentially, and in many homes across the nation, it has become an expectation that 

children will attend college immediately after graduating from high school.  At the same 
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time, college professors often complain that entering freshmen are not prepared for 

college-level work, as discussed above (Corbishley & Truxaw, 2010; Thiel et al., 2008; 

Zelkowski, 2011).  Many claim this is a growing epidemic, which stems from recently 

lowered expectations in primary and secondary schools.  However, college-readiness is 

not a recently developing concern; it has been an issue for decades (Snyder, 1993). 

Changes in higher education admission and enrollment policies have occurred over time, 

but determining who is ready for college and how to prepare students for college have 

remained challenges for many years. 

College-readiness and student-readiness are issues of debate across the nation.  

With this in mind, the purpose of this section is to:  (1) briefly describe the changes in 

access to higher education throughout history as well as the current state of accessibility; 

(2) discuss contemporary concerns with remedial/developmental courses in colleges 

across the nation; and (3) present the issues arising specifically in regards to remedial 

mathematics education in college. 

Higher Education Throughout History 

Access to higher education has changed substantially over the last few centuries.  

From the late nineteenth century through much of the twentieth century, most American 

colleges were controlled by religious groups or founded through land grants under the 

Morrill Act to promote agricultural advances (Snyder, 1993).  Less than 1% of all 18-24 

year old Americans were attending college in 1870, and the vast majority of those 

students were white males who came from extremely wealthy families (Brock, 2010; 

Snyder, 1993).  Students could be denied access for a variety of reasons during this time 

period, and selecting which students would attend a certain college was largely left for 

the university administrators to decide. Discriminatory acts and general public opinions 

about women and African Americans kept many people belonging to these groups from 

seeking higher education opportunities.  However, “in part, the lack of diversity [also] 

reflected the fact that for much of the nation’s history, a college education was not 
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needed to make a decent living” (Brock, 2010, p. 110-111).  This is no longer the case.  

Today, college graduates will earn, on average, 66% more over their lifetime than 

someone with only a high school diploma (Brock, 2010).  College graduates are also 

more likely to have access to health care and receive retirement benefits.  Many 

companies require job-seeking candidates to obtain a college degree before consideration 

for employment, so attending an institution of higher education has become increasingly 

essential for a growing number of Americans. 

The 1960s brought great cultural and social change to the United States, 

especially with the promotion of the Civil Rights Movement.  When Lyndon Johnson 

passed the Higher Education Act of 1965, federal financial assistance became available to 

students in need, which also increased rates of attendance at universities (Brock, 2010).  

During this time, enrollment at institutions of higher education rose by 120%.  The 

population was also growing rapidly, but approximately 35% of all 18-24 year old 

Americans were attending college by 1969 (Snyder, 1993).  “Open enrollment” or “open 

admission” became a developing trend in the late 1960s and early 1970s, where colleges, 

starting with City University of New York (CUNY), required only a high school diploma 

from students in order to grant admission to the university (Brock, 2010; Conley, 2007).  

This increased access for underprivileged students, especially those who were racially or 

ethnically diverse, in an attempt to reduce discrimination.  Further, women began 

attending college and entering the workforce in much greater numbers (Brock, 2010; 

Snyder, 1993).  Many colleges, especially community colleges, began adapting similar 

open admissions policies to increase access to higher education. 

Since the 1960s, access to higher education has grown substantially, a higher 

percentage of high school graduates are attending college, and the population of those 

attending has become increasingly diverse.  In 1965, total college enrollment was 

approximately 5.9 million and by 2005, the enrollment totals had grown to over 17.5 

million students (Brock, 2010).  Attending an institution of higher education has 
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gradually become conventional in the United States over the last half century.  “Although 

access to higher education has increased substantially over the past forty years, student 

success in college – as measured by persistence and degree attainment – has not 

improved at all” (Brock, 2010, p. 110, emphasis in original).  Opening doors for more 

students without being adequately prepared to support those students academically can be 

detrimental. 

With the National Commission on Excellence in Education’s publication of A 

Nation at Risk: The Imperative for Educational Reform in 1983, there was a nationwide 

call to increase the requirements and selectivity of colleges.  At that time, it was reported 

that “one-fifth of all 4-year public colleges in the United States must accept every high 

school graduate within the State regardless of program followed or grades” (U.S. 

Department of Education, National Commission on Excellence in Education, 1983, p. 

16).  Today, few large universities run with open enrollment.  This practice is largely left 

to community colleges (Snyder, 1993).  Instead, the majority of four-year universities and 

research-based institutions are more selective in their admissions decisions and examine 

student test scores, high school GPAs, etc. before offering admission.  With President 

Obama’s recent push to redefine “college readiness,” as well as his goal to provide 

students free access to higher education (specifically, two free years at a community 

college), opportunities may become available to many students who otherwise would not 

have financially had the option to attend college.  These opportunities depend on the 

results of the 2016 elections and the corresponding changes.  A policy change like this 

could also lead to a greater number of students in need of remedial education while in 

college, as there is often a positive correlation between students taking remedial courses 

and students from lower socioeconomic classes (Belfield & Crosta, 2012; Deberard et al., 

2004; Long et al., 2009). 

Remedial Education Concerns 

A small portion of college professors and university administrators believe that 



 56 

remedial education should be left to community colleges.  There is a push to encourage 

underprepared students to attend two-year preparatory programs before enrolling in a 

four-year institution (Belfield & Crosta, 2012; Brock, 2010).  Several university officials 

feel as though students should be required to pass a college entrance exam with certain 

skills evaluated, or should transfer proof of the attainment of those skills from a 

community college before being admitted into the university.  However, “undergraduates 

who begin at four-year colleges and universities are about twice as likely to complete a 

postsecondary degree as undergraduates who begin at two-year institutions” (Brock, 

2010, p. 114).  Thus, providing students with an opportunity to enroll in four-year 

institutions from the start is likely to increase the probability that those students will earn 

a college degree.  As of 2010, educational researcher Thomas Brock discovered that 

approximately 42% of all students enrolled in community colleges would require 

remedial education in either reading, writing, or mathematics, and that the students who 

required this instruction were much less likely to complete a college degree.  In four-year 

institutions nationwide, 78% of students who do not need remedial coursework end up 

graduating within 8.5 years, however, only 52% of students who do require remedial 

courses graduate in that time (Brock, 2010). 

Readiness specifically for college mathematics courses has been of particular 

concern for the past two decades (Corbishley & Truxaw, 2010; Long et al., 2009; Parker, 

2005; Reisel et al., 2012; Thiel et al., 2008).  Students are not entering college 

sufficiently prepared to be successful in mathematics or mathematics-based courses.  

Universities nationwide seem to still be surprised by this lack of preparedness and 

continually blame elementary and secondary educators.  However, there is much action 

that can be taken in higher education to help students succeed in college.  

College Mathematics Readiness 

There is currently a demand for workers in jobs that require a degree in science, 

technology, engineering, or mathematics (STEM) (Corbishley & Truxaw, 2010; Parker, 
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2005; Reisel et al., 2012; Thiel et al., 2008).  As the future generation begins to encounter 

authentic social and cultural dilemmas, having a working knowledge of mathematics and 

problem solving is essential for good citizenship.  However, as of 2008, less than half of 

all of the students in the United States who entered college as a STEM major actually 

completed a STEM degree (Parker, 2005; Reisel et al., 2012; Thiel et al., 2008).  The 

result is a “decrease in the number of American college graduates who have the skills, 

especially in mathematics, to power a workforce that can keep the country at the forefront 

of innovation” (Thiel et al., 2008, p. 45). Thus, increasing the number of students with 

STEM degrees has become a nationwide goal (Corbishley & Truxaw, 2010; Parker, 

2005; Reisel et al., 2012).  

One current obstacle to awarding more STEM degrees is the severe discontinuity 

between the mathematics curriculum in K-12 education and the corresponding curriculum 

in higher education, as described in the previous section (Bilsky, 2011; Calcagno & 

Long, 2008; Corbishley & Truxaw, 2010). Upon entering college, many professors agree 

that they expect freshmen to be “independent, self-reliant learners who recognize when 

they are having problems and know when and how to seek help from professors, students, 

or other sources” (Conley, 2007, p. 7).  However, few students are independently able to 

do this immediately after high school. 

There is international research indicating that students who were successful in 

mathematics in high school will not necessarily be equally successful in their 

mathematics courses in college (Britton, Daners, & Stewart, 2007).  Students’ past 

experiences and backgrounds therefore often cause them to enter higher education 

unprepared for their college courses.  However, this should not imply that those students 

should be banned access from a college degree.  It is true that they will embark on their 

educational journey “with different skills and abilities, varying personal motivation and 

objectives, and diverse external commitments that will influence their ability to succeed, 

but…what happens to them after they arrive on campus is at least as important as what 
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happened before” (Brock, 2010, p. 115-116, emphasis in original).  There are policy 

changes that institutions of higher education could implement that would enhance 

remedial education and simultaneously foster student learning opportunities, which I 

discuss in chapter six: implications and discussion.   

Student Success in College Mathematics:  A Visual Representation 

Many factors influence a student’s readiness and ability to be successful in 

college mathematics and business mathematics courses.  In the image on page 68 (Figure 

3), I have tried to capture this complex process in a visual design intended as an analogy.  

The overall concept in this visual representation of student success is that students soak 

up their prior experiences in mathematics and schooling with little effort (like a sponge).  

While these experiences may start as distinct, soon they may become difficult to tell apart 

and begin to blend together (like individual droplets of water) to form an overall view on 

mathematics.  After absorbing experiences, they construct perceptions and thoughts.  

Therefore, students may struggle to recall exactly how their perceptions about 

mathematics or preconceived notions initially developed.  The size of each water droplet 

is scaled based on my current perceptions of the relative importance of each experience, 

based on conversations with students and peers as well as the current literature. 

By perceptions, I mean student thoughts that are more consciously developed 

based on experiences.  By preconceived notions, I mean student thoughts that may 

develop unconsciously, perhaps due to social factors, cultural environment, or less direct 

experiences (McRaney, 2011; Von Glasersfeld, 2005; Vygotsky, 1978).  Through my 

personal experiences both being a college student and working with college students in 

mathematics, combined with the current literature available, I strongly believe that each 

of these elements and experiences can influence a student’s attitude towards mathematics 

(in terms of the usefulness, relevance, and value they attach to the subject), their self-

efficacy and confidence in their own mathematical ability, as well as their level of 

anxiety in mathematics.  All of these affective factors also impact each other, as indicated 
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Figure 3.  Visual Representation of Student Success in College Mathematics  
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by the arrows in the image.  Therefore, my research design investigated student self-

efficacy, attitudes, and mathematical anxiety as they take business mathematics courses.   

I do not think it is possible for all students to address these issues on their own. To 

help enhance student achievement in mathematics, professors should recognize and 

discuss these elements with students.  Extending this metaphor, I believe it is the role of 

college mathematics professors to “squeeze the sponge” in order to help students 

understand their perceptions of mathematics and find success.  Without squeezing the 

sponge every so often, it may grow mold or start to fall apart.  The sponge will also get 

heavy and it will become difficult to add new liquid to it (for example: new attitudes or 

confidence). Unlike a behaviorist, I believe this sponge is pliable and constantly changing 

with new material added, mixed together, and squeezed out.  Further, it takes awhile for 

the sponge to completely dry out and become ready to use again. Similarly, allowing 

students to understand their prior experiences, self-efficacy, anxiety, and perceptions 

about mathematics takes time and energy on the part of the instructor and students.   

Squeezing the sponge requires more effort than just letting it sit and soak in the 

surrounding liquid.  Thus, a behaviorist model of lecturing at students is not likely an 

effective method of instruction.  Dialogue and reflection (Dewey, 1938) are key elements 

in recognizing one’s opinions towards mathematics and how those opinions may have 

been formed or may change as they move forward.  I believe college instructors should 

introduce activities and utilize frequent, informal assessments to help students lower their 

mathematical anxiety and provide useful, meaningful feedback on these assessments to 

help students learn and develop their knowledge.  Further, professors should activate 

prior knowledge in the classroom to help students gain confidence and feel prepared to 

move forward, engage in reflective conversations, and utilize meaningful learning 

activities and authentic projects to show students the value and relevancy of the 

mathematics they are learning. 

This model does not encapsulate all aspects of student success in college 
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mathematics, but can serve as a helpful visual as one considers the multi-faceted process 

of student achievement and constructing and reconstructing knowledge.  One limitation 

of this model is that it does not include the non-academic experiences that occur during 

college.  For example, students are trying to decide on a major, learning to live under new 

conditions, and building a personal and professional network.  These factors may also 

influence a student’s success in any given course.  Further, though I generally focus on 

the professor’s role in helping enhance student opportunities for success, coaches, 

advisors, peers, or family members could also foster conversations to lower anxiety or 

increase self-efficacy.  Self-directed students may be able to critically reflect on their 

experiences on their own. Even with these limitations in the design, I believe having a 

general visual model to share with students and instructors could help both parties make 

sense of how complicated the learning process is and how vital past experiences are in a 

student’s journey through college mathematics. Further, this model begins to explain why 

I chose the variables I investigated throughout this study. 

Throughout the remainder of this chapter, I provide a general summary and 

analysis of some of the popular contemporary research on college mathematics, which 

leads to my variable selection in this research.  Specifically, I examine the contemporary 

literature on SAT scores, high school GPA, mathematics placement exam scores, gender 

differences in college, the number of classes students miss, the time students devote to 

mathematics in college, mathematical confidence and attitudes, and mathematical 

anxiety.  I then identify the limitations that exist in choosing this specific selection of 

variables.   

Rationale for Variable Selection 

When considering college readiness, one must examine the role of self-efficacy 

and anxiety, as these often play a role in a student’s ability to be successful in gateway 

mathematics courses. Here, I define gateway courses as courses that students must 

successfully complete in order to continue into more advanced coursework required for 
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degree completion.  Often, remedial or developmental courses serve as gateway courses 

in college. Acquiring a better understanding of how such affective and cognitive factors 

play a role in college students’ success in mathematics could help practitioners better 

prepare students with study strategies and curricular designs that would maximize 

learning opportunities. 

Therefore, the purpose of this study was to investigate what factors best predict 

student success in a foundational, gateway, business mathematics course (BUS 111) at 

the University of Rhode Island (URI). I examined various independent variables to see 

which combination of factors could be used to best predict my dependent variable of 

interest:  BUS 111 course average.  Most existing research on success in college 

mathematics has focused on test scores and demographics, which is where this review of 

the literature regarding the variable selection will begin (Reisel et al., 2012; Smith & 

Schumacher, 2005).  For example, Bryant College mathematics professors Richard Smith 

and Phyllis Schumacher (2005) discovered that males tend to outperform females in 

business mathematics courses.  Furthermore, students who earn higher mathematics 

SAT/ACT scores, high school GPAs, and scores on college mathematics placement 

exams are also likely to earn higher grades in college mathematics courses than their 

peers (Bridgeman et al., 2008; Long et al., 2009; Smith & Schumacher, 2005).  With 

these facts in mind, I too have included non-affective variables such as mathematics SAT 

score, high school GPA, college placement exam score, and gender in my analysis.  

These variables are discussed in detail below. 

Non-Affective Measures 

SAT Scores and High School GPA 

 Nearly all large, four-year colleges and universities in the United States consider 

students’ high school grade point averages (GPA) and standardized test scores before 

granting admission (Epstein, 2009; Kobrin & Patterson, 2011; Lang, 2007; Marsh, 

Vandehey, & Diekhoff, 2008; Sawyer, 2013).  There is an ongoing debate about whether 
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SAT/ACT scores or high school grades are a better predictor of student success in 

college.  However, research shows that both indicators, especially when considered 

together, can explain at least some of the variance in college freshmen year GPA 

(Epstein, 2009; Gehring, 2001; Kobrin & Patterson, 2011; Marsh et al., 2008; Sawyer, 

2013).  Therefore, both SAT scores and high school GPA were important indicators to 

examine in this research. 

 Originally, the SAT was designed by the Educational Testing Service and the 

President of Harvard University to encourage colleges to accept students based on their 

intellect rather than their social and financial status (Epstein, 2009).  The test has been 

losing its popularity over the last decade as many claim it is poorly aligned to high school 

curriculums and the wealthy still seem to have an unfair advantage, as students from 

higher socioeconomic backgrounds can afford to take the SAT multiple times and take 

special, expensive preparatory courses to enhance their scores (Doubleday, 2013; 

Epstein, 2009).  The current version of the SAT consists of three different sections, each 

with possible scores ranging from 200 to 800:  mathematics, critical reading, and writing.  

The College Board, which now owns the SAT and helped create the new Common Core 

State Standards (CCSS), claims that students who earn a 1550 score or higher (out of 

2400) are much more likely to earn a B- average or better as college freshmen and are 

also more likely to graduate with a college degree (Doubleday, 2013).  For the SAT 

administered in 2013, only 43% of students reached the benchmark 1550 score, 

indicating they were ready for college-level work (Doubleday, 2013).  In response, the 

College Board plans to better align the test to the CCSS over the next few years.   

Even with these criticisms, however, most college-going students are still taking 

the SAT and are commonly required to submit their scores to potential colleges in order 

to be considered for admission.  This is because colleges have found that “the SAT 

almost always has positive predictive value” of student achievement (Epstein, 2009, p. 

13).  Though sometimes weak, SAT scores generally show a positive correlation with 
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student overall GPA in college.  Specifically, recent research at public universities across 

the United States has reported correlation coefficients ranging from r = 0.35 (Sawyer, 

2013) to r = 0.44 (Marsh et al., 2008) up to r = 0.62 (Kobrin & Patterson, 2007), with 

higher correlations reported when only freshmen year GPA is considered, rather than 

overall college GPA.  In one study examining over 150,000 students from 109 colleges 

and universities, researchers found that each of the three SAT scores were statistically 

significant predictors of freshmen year GPA with p < 0.01 (Kobrin & Patterson, 2007).  

However, these researchers noted that the predictive quality was much greater when high 

school GPA was also included in the model. 

Over the last decade, a growing body of research has claimed that high school 

GPA is a better predictor of student grades in college than SAT scores (Belfield & 

Crosta, 2012; Epstein, 2009; Kobrin & Patterson, 2007; Sawyer, 2013).  However, due to 

popular trends of social promotion and grade inflation in K-12 education, some 

standardized measure of ability is usually considered necessary for college admission 

(Britton et al., 2007; Marsh et al., 2008; Sawyer, 2013).  Economics professor David 

Lang (2007) found that high schools use a wide variety of methods to calculate student 

GPA, making it an unreliable (and often invalid) measure of student ability.  After 

investigating 232 of the United States’s largest school districts, Lang found that in many 

cases “there are incentives for [high school] students to enroll in less rigorous classes 

than they should or to avoid taking an additional class” due to GPA calculation 

procedures (Lang, 2007, p. 37).  Mirroring Lang’s findings, some universities are 

discovering that “it is increasingly difficult to rely on students’ results from [high] school 

in order to be able to give appropriate advice at enrollment time” (Britton et al., 2007, p. 

867).  Specifically, over 80% of students who received passing grades in high school 

mathematics courses are generally being placed into a remedial mathematics course in 

college.  Researchers claim that inflated high school grades lead many students to believe 

they will earn similar high scores in college with the same level of effort, which is often 
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not the case. Therefore, universities generally feel compelled to ask students to include 

their standardized test scores when applying for admission as well (Britten et al., 2007; 

Lang, 2007).   

Using both high school GPA and SAT scores is the current trend in postsecondary 

education.  While examining the relationships between students’ first-year college GPA 

and their corresponding high school GPA and SAT scores, researcher Richard Sawyer 

(2013) reported correlations of between r = 0.36 and r = 0.48 for high school GPA, 

between r = 0.35 and r = 0.44 for SAT/ACT scores, and between r = 0.46 and r = 0.54 

when high school GPA and SAT/ACT scores were considered jointly.  Sawyer (2013) 

analyzed data from 192 institutions over a four-year period.  He also discovered that high 

school GPA was a better predictor for students who earned a between a 2.0 and 3.5 GPA 

during their freshmen year, but that SAT/ACT scores were more predictive for students 

who earned a 3.5 GPA or higher.  Furthermore, high school GPAs were a stronger 

predictor for students who earned higher SAT/ACT scores (Sawyer, 2013).  He 

recommended that researchers and universities continue to consider both predictors when 

investigating freshmen-year GPA in college, which is one of the reasons both variables 

were considered in this research. 

At the University of Rhode Island, both standardized test scores and high school 

GPA are considered when admissions decisions are made.  As of the Fall 2015, the 

average ACT score among admitted students was a 25 and the average SAT score was a 

1668 (“University of Rhode Island Office of Admission”, 2015).  Specifically, the 

average mathematics SAT score was a 565, the average critical reading score was a 547, 

and the average writing score was a 551 (each out of 800).  Most students accepted 

during the 2015 school year earned a high school GPA of between 3.4 and 4.0 

(“University of Rhode Island Office of Admission”, 2015). In addition, all accepted URI 

students are required to take at least 18 college-preparatory classes in high school 

including:  four years of English, three years of mathematics, two years of science, two 
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years of history, and two years of a foreign language. 

College Placement Exam Scores 

Given the criticisms of both standardized test scores (ACT/SAT) and high school 

GPAs, many colleges and universities across the globe require students to take an entrance 

exam upon admission to the university in order to determine which mathematics course 

would be best aligned with their current ability (Foley-Peres & Poirier, 2008; Reisel et al., 

2012; Smith & Schumacher, 2005).  Students are often surprised by their placement 

recommendation; they generally expect to be placed into a higher/more challenging course 

than what is suggested.  Past research has shown, in fact, that “students’ high school 

mathematics curriculum [is] not a significant predictor of their college mathematics 

placement recommendation” (Davis & Shih, 2007).  Therefore, it is not surprising that 

incoming freshmen are regularly placed into mathematics courses different than what they 

might have expected after high school.  Many colleges and universities across the nation 

use enforced mathematics placement exams to help ensure students are placed into a course 

that is appropriate for their skill level (Foley-Peres & Poirier, 2008; Reisel et al., 2012; 

Smith & Schumacher, 2005).   

Many recent studies have investigated the use of placement tests for college 

mathematics courses (Bisk, Fowler, & Perez, 2013; Foley-Peres & Poirier, 2008; Reisel 

et al., 2012; Smith & Schumacher, 2005).  Most research has found that using a 

proctored, enforced placement test helps accurately place students into the mathematics 

course for which they are best prepared and in which they are most likely to be successful 

(Bisk et al., 2013; Foley-Peres & Poirier, 2008; Reisel et al., 2012; Smith & Schumacher, 

2005).  With this in mind, I believe it is important to ensure that the current placement 

test at URI is a valid, reliable measure of student mathematical ability, and that the 

corresponding policies and procedures currently in place are appropriate, clear, and 

effective.  Further, the placement exam should accurately reflect the expectations of the 

prerequisite skills a student is expected to need in each mathematics course. Therefore, I 
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have included students’ university placement exam scores in this investigation of 

business mathematics success. 

 Not everyone is in support of enforcing a placement exam for college mathematics 

courses.  Some believe a placement exam labels students and inhibits them from self-

assessing their abilities (Jacobson, 2006) or lowers their confidence in mathematics 

(Britton et al., 2007; Davis & Shih, 2007).  Enforced, proctored placement exams for 

mathematics, while beneficial to many, may not be the best solution for every incoming 

college student.  As educational researcher Eric Jacobson (2006) notes, a student who earns 

a low placement score but has “high motivation and willingness to work may, through extra 

effort, be able to jump ahead and succeed in higher-level courses than those prescribed” (p. 

157).  If the system in place is highly restrictive, then this group of students may miss 

opportunities for advancement.  Often times, enforced placement exams also place students 

into classes less advanced than what they would have expected or what they would have 

chosen on their own, if given the option.  Therefore, while students are generally more 

likely to be successful in the course they are placed into through a placement exam, they 

may then have some catching up to do upon completing that course in terms of their 

academic program (Reisel et al., 2012).  Students who require additional mathematics 

courses are therefore sometimes less likely to complete a degree in a STEM or business 

program, as financial or emotional burdens may prevent them from staying at the university 

for more than four years (Jacobson, 2006).   

Upon completion of a placement exam, approximately one in every three college 

freshmen is found to be in need of a remedial/developmental mathematics course, which 

generally does not count for college credit (Davis & Shih, 2007; Jacobson, 2006). After 

feeling successful in mathematics in high school and being told they are in need of 

remediation in college through a placement exam, a student’s confidence in their 

mathematical ability can be damaged (Britton et al., 2007; Davis & Shih, 2007).  Placing 

students in a course they can be successful in from the beginning, however, can increase 
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their confidence once they are in the course and are performing well.  Further, taking 

preliminary courses can help prepare students for the required follow-up courses in their 

majors, which they are also more likely to be successful in with appropriate initial 

placement (Ballard & Johnson, 2004; Britton et al., 2007). 

Currently, URI requires all incoming freshmen to take a placement exam during 

their summer orientation in order to determine which mathematics course will suit them 

best.  This exam has only been proctored and enforced since the summer of 2015.  Prior to 

this implementation, over the past decade, nearly 40% of all URI freshmen had failed their 

first mathematics course at the university (D. Libutti, personal communication, January 16, 

2015).  In response, the current placement exam is broken into three tiers:  Tier A, Tier B, 

and Tier C.  Tier A consists of mostly pre-algebra and introductory algebra material, Tier B 

consists of more advanced algebraic topics, and Tier C consists of trigonometry and pre-

calculus material (J. Baglama, personal communication, March 25, 2015).  Sample 

questions are included in Appendix F (“University of Rhode Island Department of 

Mathematics”, 2015).  Students who do not answer at least seven of the ten Tier A 

questions correctly are placed into a remedial, non-credit bearing mathematics course at 

URI (MTH 099).  Students who move through Tier A successfully but do not answer at 

least seven of the ten Tier B questions correctly are placed into college algebra or finite 

mathematics courses (MTH 101, MTH 107, or the like).  Students who move through Tier 

B but do not answer at least seven of the ten Tier C questions correctly are placed into pre-

calculus courses (MTH 110 or MTH 111).  Finally, students who complete Tiers A and B 

and answer seven or more of the Tier C questions correctly are placed into calculus (BUS 

111, MTH 131, or MTH 141).  Students are able to practice and prepare for the placement 

exam on a home computer before taking the assessment on campus, if they wish to (J. 

Baglama, personal communication, March 25, 2015). 

Gender 

Though some studies have debunked the idea that gender plays a significant role 
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in a student’s academic achievement (Frankenstein, 1997; Perini et al., 2009; Sanders & 

Peterson, 1999), many students still believe that males tend to outperform their female 

peers in mathematics, business, and science courses (Berube & Glanz, 2008; 

Blaszczynski, 2001; Hall & Ponton, 2005).  Further, some researchers have shown that 

success factors for male and female college students vary in mathematics-based courses, 

such as business courses (Alexander et al., 2009; Leaper et al., 2012; Smith & 

Schumacher, 2005).  Therefore, I have chosen to examine gender as one of my variables 

of interest for this dissertation work.   

Though the gender gap in mathematics achievement has narrowed over the last 20 

years, the number of females majoring in and pursuing mathematics-based careers has 

not increased at the same speed (Berube & Glanz, 2008; Leaper et al., 2012; Paris & 

Decker, 2012; Sanders & Peterson, 1999).  In business-related fields specifically, even 

though 42% of all MBA students are women, only 3.4% of the Fortune 100 Company 

CEOs are females (Paris & Decker, 2012).  In a recent study of 439 students in a 

freshmen-level business mathematics course, male participants reported that they felt 

males alone possessed business leadership characteristics, while female participants 

believed that both men and women had leadership potential, though males were more 

likely fit for leadership roles (Paris & Decker, 2012).  Research has consistently shown 

that a student’s experiences in K-12 mathematics courses will help them develop their 

attitudes towards mathematics and determine their ability in the subject:  “differences in 

math achievement are not biological, but the product of social and cultural factors, 

expectations, and confidence levels” (Sanders & Peterson, 1999, p. 48). 

With these gender gaps in mind, it is important to consider various theories and 

empirical studies related specifically to how college students learn and the differences 

that may exist between male and female students. Popular theories and models on student 

learning in college, developed by William Perry in 1970, Mary Field Belenky and her 

colleagues in 1986, and Patricia King and Karen Kitchener in 1981, as well as some of 
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the limitations of those models, are described briefly below. 

Forms of Development in College Students (Perry, 1970) 

 In the late 1960s, educational psychologist William Perry (1970) developed a 

model on the epistemological development of undergraduate college students.  He found 

that students tend to move through a continuum as they age and develop, consisting of 

four key stages:  dualism, multiplicity, contextual relativism, and constructed knowledge 

(Perry, 1970).  Students in the dualism stage believe that professors or other authority 

figures have the knowledge and that it must be given to students.  In the multiplicity 

stage, knowledge becomes less black and white to students and questions regarding what 

truth and knowledge are begin to develop (Perry, 1970).  Only once students reach the 

contextual relativism stage can genuine learning start to occur, as students realize that 

support is needed in order for solutions to exist and that “truth” may not be the same for 

all individuals.  The final stage, constructed knowledge, is where experience and personal 

reflection begin to play a key role in a student creating his or her own knowledge (Perry, 

1970).  Similar to Grow’s Staged Model of Self-Directed Learning, explained in the 

previous chapter, this final stage leads to self-directed learning and critical dialogue.   

Perry offered a comprehensive model to describe how college students learn and 

create meaning.  He also theorized that students react to new experiences through either 

assimilation, where they are able to make connections to prior knowledge, or 

accommodation, when no prior knowledge is available, similar to Jean Piaget (Hofer & 

Pintrich, 1997; Piaget, 1964).  While Perry’s model (1970) explains how students in 

college develop their intricate “ways of knowing”, there are weaknesses to his theory.  

The major limitations of this model are that (1) the study was performed at Harvard 

University, an elite private school that was likely not representative of all college students 

in terms of socioeconomic status, race, or past achievement, and, perhaps more 

importantly, (2) only males were included in Perry’s study.  In response to these key 

limitations, human development specialist Mary Field Belenky (1986) and her colleagues 
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studied how adult women construct knowledge through various stages of development in 

college. 

Women’s Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986) 

 Though similar to Perry’s model (1970), Belenky found some key differences in 

women’s “ways of knowing” throughout higher education that are important to recognize 

(Belenky et al., 1986, p. 3).  According to Belenky’s model, women tend to grow and 

develop through a five-step continuum, similar to Perry’s four-stage model, with steps 

including:  silence, received knowledge, subjective knowledge, procedural knowledge, 

and constructed knowledge (Belenky et al., 1986).  While often feeling silenced in initial 

college experiences, most women believe the professors have the knowledge, the 

influence, and the power.  During this first stage, women generally have little confidence 

and do not believe they have any authority or a voice worthy of being heard.  In the 

received knowledge phase, they still do not question authority, but begin to feel more 

capable of receiving (though still not creating) knowledge on their own (Belenky et al., 

1986).   

During the subjective knowledge stage of Belenky’s model, college women begin 

to search for answers within themselves and believe that their own experiences are 

important in building understanding.  They begin to develop their voice, but still often 

lack confidence.  By the time they reach procedural knowledge, women realize that 

knowledge must be gained or built, not given, and they start to question the beliefs they 

held in earlier stages (Belenky et al., 1986).  Finally, similar to Perry’s (1970) model and 

Grow’s Staged Model (Merriam et al., 2007), women reach a stage of constructed 

knowledge, where they find power in their voice and their own personal experiences and 

realize that they can create and question their own knowledge, leading to self-direction 

and self-regulation of learning. 

 A limitation to Belenky’s (1986) model is that she researched mostly older 

women who were returning to college after some time; no men were included in her 
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research.  The research was also performed over 25 years ago, so recent replications of 

her findings should be performed to ensure present-day students still follow these general 

phases of development.  However, the students in Belenky’s research represented a 

variety of races, socioeconomic statuses (though all participants were still privileged to 

some degree as college students), and were between 16 and 60 years of age (Belenky et 

al., 1986).  Thus, this was more representative than Perry’s research with mostly wealthy, 

young, white males.  Even with these limitations in mind, both of these models focus on 

college students and how male and female students learn and develop.  Therefore, both 

were essential to consider while analyzing and understanding my own research with 

college students.  Professors King and Kitchener focused on both male and female 

college students and researched specifically how students develop their reflective 

capacities and reasoning skills.  Their reflective judgment model is described in the 

following section. 

Reflective Judgment Model (King & Kitchener, 1981) 

 In the 1980s, higher education professors Patricia King and Karen Strohm 

Kitchener developed a comprehensive model to describe how people approach and 

evaluate various ill-structured problems, or problems that do not necessarily have a clear 

or unique answer (King & Kitchener, 1981; King & Kitchener, 1993; King & Kitchener, 

2004).  They continue to develop and test their Reflective Judgment Model (RJM) today, 

as do many other researchers in higher education.  Since the “real world problems” that 

business students must solve are often ill-structured or ill-posed, it is important to 

consider King and Kitchener’s staged model for college students’ development as well.  

The reflective judgment model focuses on how students reflect on these problems and the 

potential solutions they approach, knowing that no single solution is available.  Though 

the RJM has seven stages, they are often broken into three main categories to consider:  

pre-reflective thinking (consisting of stages 1, 2, and 3), quasi-reflective thinking 

(consisting of stages 4 and 5), and reflective thinking (consisting of stages 6 and 7), 
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which show similar results as Perry and Belenky’s models (King & Kitchener, 1993; 

King & Kitchener, 2004). 

Pre-reflective thinkers are often unable to understand that ill-structured problems 

even exist, as they believe that all questions have definite answers, which can be either 

discovered through direct observation or given from authority figures (King & Kitchener, 

1993).  Many high school students (and younger students) are on this level of thinking, 

and often college freshmen who are not given opportunities to reflect and discuss 

uncertainties in classroom settings are also stuck in this stage of thinking.  Other college 

students have generally developed beyond this stage and are instead considered quasi-

reflective thinkers who recognize that knowledge is not always certain and must be 

constructed, not given (King & Kitchener, 1981; King & Kitchener, 2004).  Thinkers on 

this level still may struggle to approach ill-structured problems, as they are “perplexed 

about how to form a judgment when faced with uncertainty” (King & Kitchener, 1993, p. 

31), recognizing that knowledge is context-specific and subject-dependent.  While most 

college freshmen are in these stages of reflective thinking, King and Kitchener (1993) 

found no significant differences in development between the genders in reflective 

capacities. 

Typically only doctoral students and advanced college graduates are found to be 

on the final reflective thinking stage (King & Kitchener, 1981; King & Kitchener, 1993).  

Here, knowledge is personally constructed and opposing viewpoints are considered, 

respected, and evaluated.  It is in this level of thinking where “one’s understanding of 

reality is not given but must be actively constructed and that knowledge must be 

understood in relationship to the context in which it was generated” (King & Kitchener, 

1993, p. 32).  Since most college students are not yet at this stage of reflective thinking, it 

is important for college professors to recognize that students need opportunities to reflect 

on and discuss ill-structured problems in the classroom to enhance their development and 

reflective abilities.  Reflective thinking should be encouraged through cooperative group 
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work, classroom dialogue, and personal connections to the problems and solutions posed 

(King & Kitchener, 1993). 

With all of the facts presented above in mind, I too have used independent 

variables including mathematics SAT score, high school GPA, college mathematics 

placement exam score, and gender in my analysis.  These variables and their relationship 

to college mathematics success have been examined in the past and generally have been 

shown to explain at least some of the variance in student mathematics achievement.  

However, since little quantitative research exists that examines how affective factors 

might also influence course success, I hope to have addressed this gap with my research.  

My rationale for choosing each of these cognitive and affective variables (the amount of 

time a student devoted to mathematics each week, the number of mathematics classes that 

student missed, the student’s attitudes towards mathematics, and the student’s level of 

mathematical anxiety) is explained below.  

Cognitive/Affective Measures  

Time Devoted to Mathematics/Course Attendance 

Contemporary literature reveals that as students enter college, they are often 

unaware of how much time they will need to devote to mathematics in order to be 

successful in mathematics-based courses (Barnes et al., 2004; Zelkowski, 2011).  Many 

college professors do not collect suggested homework assignments or regularly grade 

informal assessments.  Further, while attendance is required in high school, many 

professors do not take attendance.  This newfound freedom forces students to make 

decisions about whether to attend class and how much time they should spend working 

on the subject outside of class.  Sometimes, it takes students a while to find the right 

balance, though very few researchers have explored this concept.  An increasing number 

of college mathematics professors tend to label this adjustment time as a lack of 

preparedness, which they frequently blame on high school teachers, and many professors 

carry the belief that it is not their responsibility to help students find this balance (Barnes 
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et al., 2004; Zelkowski, 2011).  Many middle school and high school teachers provide 

hands-on learning experiences with opportunities for guided practice during class time.  

The general notion in these grade levels tends to be that most of the learning happens 

inside the classroom, which is often not the case in college (Zelkowski, 2011).  This may 

contribute to why college freshmen fail to realize that they will frequently be required to 

do much of the learning and assigned work in college on their own, separate from class 

time.   

In general, students entering college are often unaware of the changes in 

expectations of how they should spend their time.  Researchers Barnes, Cerrito, and Levi 

(2004) discovered that only 4% of freshmen at the University of Louisville expected to 

spend five or more hours per week on mathematics outside of class, though the course 

syllabus for each class explicitly stated that students would need to spend between six 

and nine hours per week outside of class in order to be successful.  Nearly 10% of the 

incoming students surveyed reported that they did not expect to spend any time outside of 

class working on or studying for mathematics, while another 25% of students expected to 

spend less than an hour per week on mathematics (Barnes et al., 2004).  Unfortunately, 

this misunderstanding about the workload in college leads many students to fail their 

freshmen year mathematics courses as they try to adjust to new expectations and 

responsibilities. 

A key limitation of the existing literature regarding attendance and time spent on 

mathematics is the lack of focus on business mathematics courses. Therefore, I believe it 

was important to examine how much time business students reported spending on 

mathematics over the course of the semester and whether this corresponded to their 

course average.  Specifically, during the first week of the Fall 2015 semester, I asked 

students how many BUS 111 class sessions they predicted they would miss and how 

many hours per week they planned to spend outside of BUS 111 class working on 

mathematics.  This allowed students to start thinking about these questions and 
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considering their plan for the semester, while also allowing me to gauge how students 

perceived the workload and their initial notions on the importance of attendance in a 

college business mathematics course.  During the last week of the semester, I asked 

students to record how many BUS 111 mathematics classes they actually missed in total 

and how much time, on average, they spent working on mathematics outside of class each 

week.  I compared this pre- and post-survey data to look for significant differences over 

time.  I also included these factors as variables in my multiple regression model to see if 

they explained any of the variance in course average, which I explain further in chapter 

four where I discuss my methodology. 

Self-Efficacy/Confidence and Attitudes About Mathematics 

Self-efficacy is the “personal belief in capability to organize and execute actions 

to produce outcomes” (Hall & Ponton, 2005, p. 27).  While lowering self-efficacy seems 

to occur with little effort (and is often unintended), increasing a student’s self-efficacy, 

especially by the time they reach college, tends to be seen as more of a challenge.  Most 

people associate self-efficacy with confidence, and a general notion among professors is 

that confidence is up to the student:  the professor has little control over improving or 

damaging a student’s self-efficacy (Corbishley & Truxaw, 2010).  Below, I describe 

ways in which self-efficacy is generally constructed or deconstructed in college 

mathematics as well as how I examined this construct and its potential to impact student 

achievement in business mathematics through my own research. 

Many high schools across the nation have been increasing the number of 

mathematics courses required for graduation in an attempt to ensure students are better 

prepared for college (Davis & Shih, 2007; Long et al., 2009; Reisel et al., 2012).  This 

has been happening, in varying degrees, since the introduction of A Nation At Risk in 

1983.  Unfortunately, increasing the number of required courses sometimes leads to 

“course credit inflation”:  high school transcripts with certain mathematics courses listed 

that do not accurately reflect the content of the curriculum in that course (Long et al., 
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2009, p. 5).  Students are taking courses titled Algebra 2, for example, though the 

curriculum includes what has historically been considered Pre-Algebra or Algebra 1 

material.  Furthermore, due to the corresponding trends of social promotion and course 

grade inflation, which are still present in many K-12 schools, students sometimes receive 

passing grades in these courses without actually having learned the content (Long et al., 

2009).  As these inflations are leading to false expectations and are thus not doing our 

nation’s students any favors, some policy makers are hopeful these issues will be 

suppressed with the implementation of the Common Core State Standards, though that 

remains to be seen. 

Students who fall victim to social promotion and/or course credit inflation are 

often unaware of the corresponding effects.  They believe they have sufficiently 

demonstrated knowledge in a course and are therefore prepared to advance to the next 

class, or begin their first course in college.  However, those students who are entering 

colleges with transcripts inaccurately reporting that they have demonstrated a certain 

level of mathematical competency are often unprepared for the college courses that 

follow (Davis & Shih, 2007; Long et al., 2009; Reisel et al., 2012; Smith & Schumacher, 

2005).  As these students start college and struggle with the material in their first 

mathematics course, they become frustrated with their inability to earn the high grades 

they were accustomed to earning in high school.  Social promotion often causes students 

to overestimate their abilities and subsequently sign up for college mathematics courses 

for which they are inadequately prepared (Barnes et al., 2004; Davis & Shih, 2007; Reisel 

et al., 2012).  As students enter these college-level mathematics courses and realize that 

they do not understand the material presented, their confidence diminishes and anxiety 

levels rise.   

After experiencing a series of frustrations and failures in college-level 

mathematics courses, many students also lose trust in mathematics instructors at both the 

high school and college level. They therefore begin to doubt the value and relevancy of 
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mathematics in their lives.  This lack of preparedness and confusion after high school 

“success” can lead to low self-efficacy and lack of confidence among incoming college 

freshmen as they enter mathematics courses (Kesici & Erdogan, 2009).  Unable to trust 

high school transcripts alone, many colleges and universities require students to take an 

entrance exam to determine which mathematics course would be most aligned with their 

current ability, as described in greater detail earlier in this chapter (Reisel et al., 2012; 

Smith & Schumacher, 2005).  

The number of students being placed specifically into developmental or remedial 

mathematics courses has grown exponentially over the past few decades (Barnes et al., 

2004; Bisk et al., 2013; Hall & Ponton, 2005; Hammerman & Goldberg, 2003; Reisel et 

al., 2012).  Being placed in such a course carries a certain stigma, as students begin to 

wonder:  What needs to be developed?  What about my mathematical skill set needs to be 

remedied?  The mathematics course designed to prepare students for BUS 111 at URI, 

MTH 110, is a remedial course and thus many students avoid taking it.  While students 

earn college credit for taking MTH 110, it does not count towards their degree 

completion, nor does it count as a general education mathematics course should they 

decide to switch majors.  The self-efficacy of students in remedial courses is generally 

very low, often leading to failing grades (Barnes et al., 2004).  Being told they need 

development can lower self-efficacy and cause students to believe they are incapable of 

performing well in mathematics.  Not surprisingly, a high percentage of students fail 

these courses, as low self-efficacy leads to a negative self-fulfilling prophecy (Taylor, 

2008; Waycaster, 2004).  These students also tend to hold negative attitudes towards 

mathematics and their instructors even after moving into more advanced courses.  Many 

students resent being required to take these courses, especially when they know that they 

will not receive college credit (Hammerman & Goldberg, 2003).  However, as students 

enter these courses, they often also realize that they truly are in need of this remediation, 
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leading them to develop low confidence in their ability to accurately assess their own 

skill set and be successful in mathematics or business mathematics courses.  

Other students enroll in more advanced courses, such as BUS 111, only to 

discover that they may be in need of remedial help, which can lead to frustration and a 

severe blow to their mathematical self-efficacy (Kesici & Erdogan, 2009). Current 

literature reveals that even students in non-remedial mathematics courses are at high risk 

of failing during their freshmen year due to a general lack of confidence in mathematical 

ability (Hall & Ponton, 2005).  However, student success in college mathematics courses 

has been found to be positively correlated with a student’s corresponding success (in 

terms of retention and GPA) in college in general and thus was essential to examine (Hall 

& Ponton, 2005; Smith & Schumacher, 2005).  

In 2005, researchers Hall and Ponton carried out a mixed-methods study that 

examined the self-efficacy of college freshmen enrolled in remedial mathematics courses. 

The researchers discovered that previous performance and perceived mathematical ability 

were key elements for success in college mathematics. Students who have not previously 

been successful in mathematics are more likely to feel nervous about their college 

mathematics course and are therefore less likely to choose majors in business, STEM, or 

other mathematics-based fields (Reisel et al., 2012).  In addition, Hall and Ponton (2005) 

discovered that students who are enrolled in higher-level courses, such as calculus or 

statistics/probability, tend to feel much more confident in their mathematical abilities 

than their peers who are enrolled in “developmental” or remedial courses.  Students in 

developmental courses also tend to hold negative attitudes towards mathematics and their 

instructors, often failing to see the relevancy of mathematics in their daily lives.  

However, students in the United States in general, regardless of their placement, lack 

confidence in mathematics (Tobias, 1987).  

Current research investigating the impact of positive attitudes in college students 

suggests that a strong correlation exists between attitude (especially confidence) about a 
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course and corresponding course grade (Hall & Ponton, 2005; Kesici & Erdogan, 2009; 

Tapia & Marsh, 2004).  Developing a positive attitude towards mathematics and 

increasing students’ mathematical self-efficacy has consequently become a recent goal of 

many educators.  Research has shown that students in middle school and high school who 

enjoy and value mathematics are more likely to earn high grades in their mathematics 

courses (Tapia & Marsh, 2004).  Further, mathematics researchers Martha Tapia and 

George Marsh (2004) found that “attitudes toward mathematics, especially enjoyment, 

confidence, and perceived usefulness of mathematics influence persistence in 

mathematics” in middle school and high school (p. 4).  This is likely to be true with 

students in higher education settings as well.  However, most college students are not 

asked about nor encouraged to reflect on their self-efficacy or perceptions of mathematics 

(Corbishley & Truxaw, 2010; Frankenstein, 1997; Thiel et al., 2008). Therefore, in my 

research, I felt it was appropriate to examine college student attitudes towards 

mathematics, including confidence, to see the impact those attitudes may have had on 

student achievement in BUS 111.   

Mathematical Anxiety 

Typically, as a student’s confidence in mathematics decreases, the anxiety they 

feel about mathematics simultaneously increases.  Mathematical anxiety is generally 

defined as “the panic, helplessness… and mental disorganization that arises among some 

people when they are required to solve a math problem” (Tobias & Weissbrod, 1980, p. 

65).  A typical notion about anxiety held by professors is that if students work hard and 

study mathematics, they should not feel anxious.  During interviews for a qualitative 

research study in the Midwest, one professor claimed, “I’m sure if [students] understood 

[mathematics], they’d be less anxious and maybe they wouldn’t hate it so much” (Mesa, 

2012, p. 61).  If students do feel anxious, professors often believe it is not their role to 

ease that anxiety, nor do they have much control over it (Kesici & Erdogan, 2009).  I 

disagree.  Below, I describe some of the common triggers of anxiety and how I measured 
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anxiety in my own research to examine how it may be related to student achievement in 

business mathematics. 

Often, students in college-level courses experience severe mathematical anxiety 

because they are not prepared “in terms of workload expectations, high standards of 

many college mathematics faculties, and skills necessary for complex mathematical 

thinking” (Corbishley & Truxaw, 2010, p. 73).  This anxiety can be detrimental to overall 

student achievement:  students who exhibit higher mathematical anxiety are less likely to 

be successful in mathematics courses (Corbishley & Truxaw, 2010).  When a student 

feels confident about their mathematical knowledge and competency, they are more 

likely to stay calm during mathematics and approach new problems with a level of 

comfort or even excitement, rather than nervousness.  This allows them to reason 

logically through a variety of problems at multiple levels of difficulty (Kesici & Erdogan, 

2009). 

As stated in the previous section, many college freshmen are currently being 

placed into “developmental” or “remedial” mathematics courses due to low placement 

test scores and a perceived lack of college readiness.  Unfortunately, students in these 

courses tend to exhibit more anxiety and less confidence than their peers who are taking 

non-remedial courses (Hall & Ponton, 2005).  In the early 1990s, educational researcher 

Linda Serra Hagedorn and her colleagues (1994) discovered that over 40% of college 

freshmen across the nation were failing their developmental mathematics courses.  That 

number has not significantly decreased in recent years (Reisel, et al., 2012). Educators 

Frost, Coomes, and Lindebald (2009) found that only about 30% of students who were 

taking remedial mathematics courses at Washington State University were expected to 

receive a passing grade.  This low passing percentage is mirrored at URI (A. Armstrong, 

personal communication, July 23, 2015).   

Too often, students are turned away from majoring in business or STEM fields 

because of their negative experiences or persistent failure in developmental mathematics 
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courses (Hall & Ponton, 2005; Johnson, 2007; Parker, 2005; Reisel et al., 2012).  These 

extremely high student failure rates also lead already anxious students to develop even 

more anxiety and negativity towards mathematics (Frost et al., 2009; Hagedorn et al., 

1999; Hammerman & Goldberg, 2003; Tobias, 1987).  Some students taking BUS 111 at 

URI take remedial mathematics over the summer to prepare for the course if they do not 

feel ready for college mathematics or do not place into BUS 111.  These students 

especially seem to report feeling anxious when approaching problems and describe 

negative experiences in previous mathematics courses.  This is not surprising, as past 

experiences with failure tend to lead to high levels of anxiety in mathematics (Taylor, 

2008). 

Professors Sahin Kesici and Ahmet Erdogan (2009) performed a mixed-methods 

study to investigate success in various college mathematics courses.  The researchers 

found that when students could not see the applicability of the mathematics they were 

learning, they were more likely to feel anxious. Similarly, when professors used the same 

delivery methods or displayed a negative attitude towards students, it led to mathematical 

anxiety amongst students.  Students who were given a task that they believed was 

purposeful or relevant to their lives, on the other hand, were less likely to give up on the 

task and more likely to develop effective problem solving skills (Kesici & Erdogan, 

2009).  

Similar to Hall and Ponton’s findings (2005), Kesici and Erdogan (2009) 

performed a mixed-methods study to investigate the relationship between course grades 

and anxiety in mathematics.  They discovered that mathematical anxiety was negatively 

correlated with performance in mathematics courses (Kesici & Erdogan, 2009).  Further, 

they found that many students suffered from mathematics anxiety during college because 

of their high school instruction, stress from exams, and experiences with failure, which 

inhibited their overall ability to be successful (Kesici & Erdogan, 2009).  College 

students’ attitudes towards mathematics were also strongly negatively correlated with 
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their corresponding levels of anxiety in mathematics.  College students with high anxiety 

tended to depend more on the instructor and were often unable to self-regulate their 

learning, causing them to believe mathematics was externally known and not connected 

or relevant to their lives outside of the classroom (Kesici & Erdogan, 2009; Tobias & 

Weissbrod, 1980).   

Researchers, professors, and students alike generally recognize that mathematical 

anxiety is one of the most frequently occurring academic anxieties, and can be 

detrimental to a student’s learning experience (Corbishley & Truxaw, 2010; Kesici & 

Erdogan, 2009).   In such a math-phobic culture, when I tell people I teach mathematics 

in college, typical responses include:  “Oh I hated math” or “Wow, you must be loved” 

(sarcastically) or “Why would you choose to do that?” or sometimes just “Better you than 

me.”  In a study conducted in 2003, researchers discovered that anxiety levels in some 

students could predict mathematical performance and motivation better than actual 

mathematical ability (Ironsmith, Marva, Harju & Eppler, 2003).  Therefore, lowering 

mathematical anxiety could lead to higher student achievement in college business 

mathematics courses, and deserves special attention.  For this reason, I included 

mathematics anxiety as one of the variables in my dissertation.  I believe anxiety 

negatively affects many students and may be a strong predictor of success in college 

mathematics courses:   

 The well-being of our nation depends on the ability of our youth to succeed with 

mathematics.  For this to happen we must make mathematics visible by 

destroying myths, overcoming anxieties, and removing barriers.  Once 

mathematics is out in the open, unencumbered by mystery and obfuscation, fear 

will diminish and confidence will increase. (Tobias, 1987, p. xviii) 

Business Mathematics 

According to the National Business Education Association (1995), 

“computational skills are essential for students as they become citizens, consumers, wage 
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earners, employees, employers, investors, inventors, and entrepreneurs.  Making 

decisions in each of these various roles requires quantitative calculations” (p. 55).  Thus, 

business courses focusing on computational skills are required for most freshmen who 

want to major in business across the nation (Blaszczynski, 2001; Smith & Schumacher, 

2005).  Colleges of business have found mathematical ability to be a “critical filter” for 

students to access higher-level jobs in the business field (Blaszczynski, 2001, p. 2).  As a 

result of this important finding, at URI, similar to many universities, students must 

successfully complete a business mathematics course (BUS 111) before continuing their 

degree program in the College of Business. 

As explained above, a number of studies have examined the perceptions that 

professors and students hold about readiness for college mathematics (Blanchard, 2008; 

Corbishley & Truxaw, 2010; Johnson, 2007; McDuffie & Graeber, 2003; Zelkowski, 

2011).  Over the past two decades, some qualitative research has also been devoted to 

student self-efficacy in mathematics, student’s attitudes towards mathematics, and 

mathematical anxiety, as these factors seem to be linked to student achievement (Hall & 

Ponton, 2005; Kesici & Erdogan, 2009; Parker, 2005; Thiel et al., 2008).  Few studies 

examine business mathematics courses, though business is currently the most popular 

major in the United States (U.S. Department of Education, National Center for Education 

Statistics, 2015).  Most literature seems to focus on the problems with the current 

conditions of mathematics in higher education (Ballard & Johnson, 2004; Blanchard, 

2008; Corbishley & Truxaw, 2010; Hall & Ponton, 2005; Johnson, 2007; Reisel et al., 

2012).   

A key weakness in the current literature is the general lack of proposed solutions 

to these issues.  While some general solutions are offered (Frost et al., 2009; Long et al., 

2009; Thiel et al., 2008; Zelkowski, 2011), most emphasize K-12 teaching solutions; very 

few focus on proposed changes in higher education.  Those that do offer solutions in 

higher education (for example: suggestions to increase student engagement, help students 
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feel less anxious, or offer professional development on pedagogical practices) suggest 

changes that are too broad to be applied without further, detailed suggestions on 

implementation (Frost et al., 2009; Thiel et al., 2008).  For example, specific programs 

designed to lower mathematical anxiety in college or sample curricular plans that 

enhance student self-efficacy are missing.  Further, the general lack of agreement on what 

it means to be college-ready and how to adequately prepare students is a limitation of the 

current literature.  Few researchers have instead investigated the idea of student-readiness 

and the lack of adequate preparation available for colleges to better prepare for incoming 

freshmen. 

Another limitation in the contemporary literature is the lack of research regarding 

business mathematics courses.  Because business is the most popular major at many large 

universities, most business programs offer their own mathematics courses, separate from 

the typical mathematics department. These courses often focus on applications that 

require real-world problem solving and mathematical literacy, which may not be 

highlighted in other mathematics courses that emphasize formula recall and repetition 

(Smith & Schumacher, 2005).  Therefore, more research on students’ experiences in 

business mathematics is necessary to help ensure students are being effectively served in 

this major. 

The existing research that examines student success in business mathematics has 

found limited results (Samad et al., 2009; Smith & Schumacher, 2005; Truell & Woosley, 

2008).  Researchers Samad, Tuah, and Haron found that students’ attitudes, family 

backgrounds, and the method of lecture they were exposed to impacted the course grades 

of many students majoring in business in Malaysia (2009).  Mathematics professors 

Truell and Woosley found that mathematics SAT scores were a good predictor of 

graduation rates for business majors at a large university in the Midwestern United States 

(2008).  Similarly, in 2005, mathematics professors Schumacher and Smith performed a 

multiple regression analysis to search for variables that best predicted mathematics GPA 
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for actuarial business students at Bryant College in Rhode Island.  The researchers 

examined mathematics SAT scores, verbal SAT scores, high school percentile ranks, 

grades earned in college calculus courses, and scores on the college’s mathematics 

placement exam as predictor variables.  They found that differences existed in the results 

between male and female actuarial students.  However, the authors indicated it was likely 

that other confounding variables, such as attitude and perceptions, played a significant 

role in a student’s success (Smith & Schumacher, 2005).  They encouraged future 

researchers to include these variables in a multiple regression model, which my study has 

done.  

BUS 111 at URI 

BUS 111 is a foundational, gateway mathematics course required for all URI 

business majors.  Students who do not take and pass this course while simultaneously 

maintaining at least a 2.5 cumulative GPA will not be permitted into the College of 

Business. Historically, the failure rate in the course has been approximately 31% each 

semester (D. Libutti, personal communication, January 16, 2015).  Topics explored in the 

course include:  mathematics of finance (time value of money), linear programming, 

technology in business, break-even analysis, cost-benefit analysis, quadratic and 

exponential functions in business, differentiation, optimization methodology, and 

applications of optimization in business.  See Appendix G for a sample syllabus from a 

typical BUS 111 course. 

Research Questions 

There is currently a distinct lack of research that examines the relationship 

between success in college business mathematics courses and student attitudes, 

mathematical anxiety, perceptions of instructional effectiveness, and time devoted to the 

subject.  The little research that has been performed in this area has produced results that 

are limited to small case studies in countries other than the United States (Samad et al., 

2009), or are limited to non-affective measures and are thus inconclusive (Smith & 
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Schumacher, 2005; Truell & Woosley, 2008).  Insight on student attitudes, confidence, 

and perceptions may help reveal other predictors of success in business mathematics, 

allowing for better advising and possible curricular and instructional changes.  The 

overarching research question that was explored in this study was:  What factors best 

predict success in a foundational business mathematics course (BUS 111 at URI)?  

Follow-up questions were:   

1. Are these predictive factors different for male and female students?   

2. How do student attitudes towards mathematics change after taking BUS 111 at 

URI?  

3. How does student mathematical anxiety change after taking BUS 111 at URI?  

4. What is the relationship between perceived instructional quality and success in 

the BUS 111 course at URI? 
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CHAPTER FOUR:   
RESEARCH DESIGN AND METHODOLOGY 

In preparing for this dissertation research, I explored and considered many 

methodologies and reviewed current literature to better understand which methods were 

most frequently used in analyzing student success in college mathematics and business 

courses, as well as the strengths and limitations of those designs.  In this chapter, I 

explain the rationale for my overall choice of quantitative methodology for my 

dissertation considering my research questions, my philosophical worldview, and my 

intended audience.  I then describe my specific methodology and research design 

(multiple regression analysis using survey data).  I also examine the details of my data 

collection and analysis procedures including the specific instruments and surveys used to 

investigate each of the variables.  Finally, I describe some of the limitations of multiple 

regression analysis as well as my insider position as a past student and current instructor 

at the institution where I conducted research (the University of Rhode Island), and then 

how I addressed this issue throughout my data collection and analysis. 

Arriving at a Quantitative Methodological Approach 

Many factors must be considered when determining an appropriate methodology 

for research.  Methodology should be chosen according to the research question being 

addressed, the researcher’s worldview, and the intended audience (Creswell, 2014; 

Fraenkel, Wallen, & Hyun, 2011; Patton, 2002).  Therefore, it is important that a 

researcher does not necessarily deem herself a “quantitative researcher” or a “qualitative 

researcher” and then develop questions that involve those methods; rather, she should be 

open to choosing methodologies that best fit the questions that develop naturally in her 

work, her philosophical worldview, and her anticipated audience.   

Research Question 

Researchers should ensure that their research question guides their methodology 

and not the other way around (Creswell, 2014; Fraenkel et al., 2011). Typically, questions 

that require an inductive analysis are best examined with a qualitative research design, 
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whereas questions that are more deductive in nature are better addressed with a 

quantitative design (Creswell, 2014; Fraenkel et al., 2011; Patton, 2002).  Thus, only 

once the researcher has identified the specific question or set of questions that he or she 

wants to investigate can the corresponding methodological procedures be effectively 

determined.  

If the overarching research question in a study focused on the experiences of 

students within a certain culture or classroom, for example, qualitative methods such as a 

case study or ethnography with data sources such as interviews and observations would 

likely be an appropriate corresponding methodology (Patton, 2002).  If the research 

question instead focused on differences in test scores before and after a specific treatment 

within a certain group, quantitative methods such as paired t-tests would likely be a more 

appropriate methodology (Fraenkel et al., 2011; Huck, 2012; Weiss, 2008).  Specifically, 

if the question includes an interest in “the identification of factors that influence an 

outcome, … or understanding the best predictors of outcomes, then a quantitative 

approach is best” (Creswell, 2014, p. 20).  Mixed-methods research designs are often 

employed to collect and interpret the results of connected quantitative and qualitative data.  

These designs are generally used when the research question posed cannot be answered 

using quantitative or qualitative methods alone (Creswell, 2014; Fraenkel et al., 2011; 

Patton, 2002).   

Throughout my work as an instructor in the College of Business Administration 

(CBA) at the University of Rhode Island (URI), questions have naturally developed that I 

would like to investigate and shed light on through rigorous research.  The overarching 

question that I was always most interested in researching was:  What factors best predict 

success in a foundational, business mathematics course (BUS 111 at URI)?  Therefore, 

according to Creswell (2014), quantitative methods needed to be employed.  Specifically, 

because I was interested in more than one independent variable and was exploring 

possible predictive relationships among these variables, multiple regression best addressed 
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my research question (Fraenkel et al., 2011; Huck, 2012; Weiss, 2008).  Further, since I 

was investigating factors such as attitudes and feelings of a specific population, 

quantitative survey research was the recommended design (Creswell, 2014; Fraenkel et 

al., 2011).   

Philosophical/Theoretical Worldview 

As introduced in chapter two (theoretical framework), in my personal and 

professional life, I tend to see the world from both a post-positivist and a pragmatic lens.  

As a post-positivist, I generally believe that outcomes can often be linked to specific 

causes (Creswell, 2014).  I seek to develop explanations through research that can be used 

to describe the relationships amongst certain phenomena.  As a pragmatic researcher, I 

seek to find answers to research questions that can be directly applied in educational 

settings (Creswell, 2014).  I believe one of the key purposes of research is to identify 

current problems and then offer solutions or clarity to those problems that can ultimately 

be used to improve educational practices.  Thus, in my dissertation research, I hoped to 

find quantitative regression models that could be used to inform students, instructors, and 

advisors of the factors that can help predict student success in business mathematics at 

URI. I hope that, with the support of my findings, instructional or curricular changes can 

be implemented as needed. 

In addition to my pragmatic, post-positivist worldview, I also believe that true 

teaching and learning cannot take place without considering the experiences, beliefs, and 

perspectives of the students in the classroom.  The student plays a vital role in 

constructing his or her knowledge; the student is not a passive object upon which an 

instructor can simply impart information through lecturing (Frankenstein, 1997; Von 

Glasersfeld, 2005; Vygotsky, 1978). As a student-centered practitioner and researcher, I 

argue that learners must be provided with opportunities to reflect on their experiences in 

mathematics and explore their attitudes towards the subject if they are to be successful. 

Most of the current quantitative research that examines mathematics success for college 
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students focuses on grades the student previously received, scores on standardized tests, 

and GPA (Bridgeman et al., 2008; Smith & Schumacher, 2005; Samad et al., 2009; Truell 

& Woosley, 2008).   

Students are more than test scores.  Most colleges require standardized test scores 

and high school GPAs for admission.  From my student-centered stance, I believe 

students’ previous experiences and perceptions of mathematics play a significant role in 

their achievement in college mathematics courses.  Therefore, I chose to examine affective 

and cognitive variables that focused on the student, such as perceived effectiveness of 

their instructor (Thiel et al., 2008), student attitudes towards mathematics (Hall & Ponton, 

2005; Tapia, 1996), student level of mathematical anxiety (Ironsmith et al., 2003; 

Mahmood & Khatoon, 2011; Tobias, 1987; Tobias & Weissbrod, 1980), the time a student 

devoted to mathematics (Corbishley & Truxaw, 2010; Parker, 2005), and student 

confidence (Hall & Ponton, 2005) in this analysis.   

Intended Audience 

Researchers must also keep their intended audience in mind when choosing the 

appropriate methodology (Creswell, 2014).  In higher education, qualitative, quantitative, 

and mixed-methods designs are common, though in some higher education departments, 

certain methodologies tend to be more highly valued than others (Guido, Chávez, & 

Lincoln, 2010).  Therefore, as a researcher interested in investigating college student 

achievement in a business mathematics course, it was important for me to understand 

which methodological research designs were most valued in these corresponding 

departments (namely: college business departments and college mathematics 

departments). 

 My main goal in analyzing the results of this study and writing this dissertation 

was to elicit change as necessary in the foundational mathematics courses in the College 

of Business Administration (CBA) at URI.  Now that my data has been analyzed, I hope to 

present my findings during our annual Fall conference and offer potential implications for 



 92 

practice while also suggesting future research. The Dean of the CBA as well as the 

Assistant Dean and fellow faculty members are very interested in enhancing student 

opportunities for learning in the College.  Currently, the faculty and administrators in the 

College of Business are very numbers-oriented and generally place greater value on large, 

generalizable, quantitative research.  These studies tend to carry more importance in the 

CBA and thus, researchers who carry out these types of research designs are more likely 

to be recognized.   

This is not to say that staff and faculty members in the CBA are not interested in 

learning about the experiences of their students.  Quite the contrary, in fact:  many 

professors in this college are constantly seeking innovative ways to reach more of their 

students and enhance their teaching practices.  However, before they are willing to enact 

major change, most are interested in seeing data supporting the fact that the change(s) 

implemented will benefit the majority of their students.  Some have expressed concern 

that changes may only help a small handful of students and may actually have a negative 

effect on other students.  Therefore, I believe if I can first present this quantitative data, 

which both represents the significant factors of student achievement from a large sample 

of students and also supports my claim that student achievement depends on more than 

past GPAs and SAT scores, the CBA will be more likely to support future research (either 

qualitative or quantitative) I propose.  After this dissertation is complete and my results 

have been shared, I believe I will have their support in investigating other issues in the 

college.  For example, in future studies, I would like to explore potential curricular design 

issues, instructor effectiveness, and general student learning experiences in the College of 

Business Administration.  These issues may be better explored using qualitative or mixed-

methods research designs. 

Considering my overarching research question, philosophical/theoretical 

worldview, and specific intended audience, according to research experts (Creswell, 2014; 

Fraenkel et al., 2011), a quantitative multiple regression research design was the best 
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Quantitative  
Research 

Design	

Research Question:	
Predictive relationships	

Factors influencing 
outcomes	

Deductive nature	

Philosophical 
Worldview:	

Post-positivist	
Pragmatist	 Intended Audience:	

College of Business 
Administration 	

Instructors	
Values generalizability	

methodological choice for this research.  Much energy and deliberation went into arriving 

at this research approach and various alternatives were considered and discussed with my 

colleagues and peers.  The figure on the following page (Figure 4) visually represents how 

I was originally led to this general methodological strategy based on each of the elements 

discussed above.  

 

 

 

 

 

 

 
 
 
 
 

 

Figure 4.  Selecting a Quantitative Research Design 

 

Choosing Multiple Regression 

I was interested in exploring predictive, quantitative relationships in this 

dissertation using multiple independent variables. Thus, multiple regression was the best 

choice for overall methodology (Huck, 2012; Weiss, 2008).  Multiple regression is a 

statistical procedure which yields an equation that can be used to predict values of the 

dependent variable of interest given values of the statistically significant independent 

variables included in the model (Chen, Ender, Mitchell, & Wells, 2003; Hair, Anderson, 

Tatham, Black, 1998; Huck, 2012; Kuter, Nachtsheim, & Neter, 2003; Weiss, 2008).  

Multiple regression allows the researcher to determine how much of the variance in the 

chosen dependent variable can be explained by each of the selected, significant 

independent variables.  Ultimately, using multiple regression allowed me to determine 
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“the degree to which each independent variable contribute[d] to successful predictions” 

while holding all other independent variables constant (Huck, 2012, p. 380).  

Specifically, my regression model has allowed me to identify how much of the 

variance in students’ BUS 111 final course grade can be explained by:  their attitudes 

towards mathematics, their mathematical anxiety, their high school GPA, the time they 

devoted to mathematics each week during the semester, the number of BUS 111 classes 

they missed, their gender, the score they earned on the URI mathematics placement exam, 

and their mathematics SAT score.  Further, collecting survey data and using existing data 

from the University of Rhode Island (with the permission of the IRB, the College of 

Business Administration, the student participants, and the BUS 111 instructors) allowed 

me to sample a relatively large number of students (n = 247).  According to the U.S. 

Department of Education National Center for Education Statistics, in 2012, 52% of all 

undergraduate business majors were male, 64% were white, 12% were Black, 9% were 

Hispanic, 7% were Asian, and 8% identified as “Other” (Siebens & Ryan, 2012).  As my 

sample is fairly representative of college students in business mathematics nationwide (see 

the next section for specific comparisons with this sample), generalizability to some 

degree could also be achievable. 

 Methodological Procedures  

Participants 

BUS 111 is a foundational, calculus-based mathematics course required for all 

business majors.  Students who do not pass this course are not permitted into the College 

of Business. Historically, the failure rate in the course has been approximately 31% (D. 

Libutti, personal communication, January 16, 2015).  I invited all students who were 

enrolled in BUS 111 at the University of Rhode Island (URI) during the Fall 2015 

semester to participate in this research.  This group initially consisted of 266 students in 

six sections with three different instructors (an ANOVA analysis was run to determine 

whether significant differences existed between the three instructors on each variable).   
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This was a convenience sample, as I teach for the College of Business and thus 

had direct access to these students and their instructors. However, it was also purposive, 

because the population I was interested in was undergraduate business majors enrolled in 

entry-level college mathematics courses (especially at URI), so this sample was very 

representative of my intended population (Fraenkel et al., 2011). These students were 

mostly between the ages of 18 and 22 years old and the majority of them were in their 

freshmen year at URI. If students were under the age of 18, they were excluded from the 

study, however only eight students were excluded for this reason.  Other than this 

exclusion, as long as the student was enrolled in a section of BUS 111 at the time of the 

study, they were invited to participate.    

By surveying students in a classroom setting, the response rates were likely higher 

than if other methods were used (Fraenkel et al., 2011). When students are asked to take a 

survey during a pre-scheduled event that they do not have to plan around, they are more 

likely to be willing to participate.  Students were told of the positive, informative purpose 

of the survey (to examine factors predicting success in their course), which also 

encouraged their participation (Fraenkel et al., 2011; Huck, 2012).  However, I ensured 

students were aware that their participation would not in any way affect their grade in 

BUS 111 or their academic standing (see the email sent to students in Appendix E and the 

verbal scripts in Appendix J for more details).  According to statistician Daniel Soper 

(2006), the minimum sample size needed to test this number of predictor variables (8) 

and still maintain a medium to high effect size in multiple regression was 113 students 

(other sources recommend 20 participants per independent variable; Hair et al., 1998).  

Each of the initial 266 students in BUS 111 were invited to participate in the survey, with 

a final total of 247 total participants:  224 who completed the pre-survey, 202 who 

completed the post-survey (only 258 students were enrolled in the course during the 

administration of the post-survey), and 179 completing both the pre- and post-survey.  

This final matched number of 179 participants accounts for students who chose not to 
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participate in the study, students who were absent during survey administration, students 

who dropped the course, students who only completed one of the two surveys, and 

students who were under the age of 18. These response rates of 84.2% on the pre-survey 

and 78.3% on the post-survey are considered adequate samples (Fraenkel et al., 2011).  I 

worked closely with the instructors of this course, so gaining access to this group was 

relatively easy and I was provided students’ e-mail contact information through the 

university’s eCampus system.  While I have taught BUS 111 in the past, I did not teach 

this course at the time of the study in order to eliminate the possibility of coercion and 

conflict of interest. 

The setting of this survey was the University of Rhode Island, a large rural 

university in the Northeast.  The sex distribution of the sample was typical of the College 

of Business Administration (CBA) at URI:  36% of the participants were female and 64% 

were male.  The ethnic breakdown and socioeconomic distribution of the sample were 

fairly representative of URI, where roughly 69% of students typically identify as White, 

8% are Hispanic, 5% are Black, 3% are Asian, 3% identify as two or more races or 

“Other”, 2% are non-residential aliens, and the remaining 10% chose not to disclose (D. 

Libutti, personal communication, January 16, 2015).  The majority of the students in the 

CBA come from middle class or upper-middle class families. Sometimes in the College 

of Business, racial diversity is actually greater than the rest of URI due to a number of 

grants and foundations in place designed to increase the number of students from racially 

diverse backgrounds in business.  Unfortunately, however, many students from these 

racially diverse backgrounds start in MTH 101 or MTH 110 rather than BUS 111.  Thus,  
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these percentages varied slightly in my sample, where 84.38% were White, 5.8% were 

Hispanic, 2.23% were Black, 3.13% were Asian, 0.45% identified as two or more races, 

2.88% were non-residential aliens, and 1.14% chose not to disclose. The setting of this 

study and the demographics of the participants were fairly representative of business 

students across the nation (Siebens & Ryan, 2012; Smith & Schumacher, 2005; Truell & 

Woosley, 2008).  The table below shows the comparative racial demographics of this 

study: 

 
Table 3. Business Major Ethnicity/Race and Gender Breakdown (“University of Rhode Island Office of 
Admission”, 2014; U.S. Department of Education, National Center for Education Statistics, 2015) 

Over the course of the semester and during planning meetings before the semester 

began, the BUS 111 instructors shared course materials and used very similar methods to 

assess students.  The level of collaboration among the instructors was high and often they 

would share projects, exams, and quizzes for consistency across sections.  Still, because 

different instructors often have different teaching practices, different relationships with 

students, and various assessment strategies, I performed an ANOVA on each variable to 

examine whether statistically significant differences existed between students under the 

three different instructors (Huck, 2012; Weiss, 2008).   The results of this ANOVA and 

other findings are presented in chapter five (findings/results). 

Variables of Interest 

Eight independent variables were examined in this study as predictors.  First, 

gender was included, as research shows significant gaps in business mathematics 

All Business 
Students in the 

U.S. 
64% 9% 12% 7% 1% 6% 1% 52% 48% 

All Students 
Attending URI 69% 8% 5% 3% 3% 2% 10% 46% 54% 

Students in this   
Research 84% 6% 2% 3% < 1% 3% 1% 64% 36% 
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achievement often exist between male and female students (Smith & Schumacher, 2005).  

Second, high school GPA was obtained and standardized, if necessary, to fit a 4.0 scale.  

Third, mathematics SAT score was examined.  If students took the ACT instead of the 

SAT, these test scores were also standardized to fit the same scale.  However, the SAT is 

more prominent in the Northeast and only 12 participants (4.86% of participants) in this 

study took the ACT.  Fourth, student scores (numeric averages) on the university’s 

department-generated mathematics placement test were obtained and analyzed.  All 

business students were asked to complete the proctored placement test on a computer 

during summer orientation.  See chapter three for more details on URI’s current 

placement procedure. Questions on this assessment ranged from pre-algebra to pre-

calculus material and students were not permitted to use a calculator or other resources 

(see Appendix F for sample placement exam questions; “University of Rhode Island 

Department of Mathematics”, 2015). Fifth, a student’s attitude towards mathematics was 

examined using the Attitudes Towards Mathematics Inventory, which is described in 

detail below.  Sixth, a student’s mathematical anxiety was measured using the 

Mathematics Anxiety Scale, which is also described below.  Seventh, the average number 

of hours per week a student spent on mathematics outside of class, as reported by the 

student, was examined to see if this was related to their course grade.  Finally, the 

number of BUS 111 classes missed over the course of the semester, also reported by the 

student, was included, as multiple literature sources posit that college students tend to 

earn higher grades when they devote more time to the subject (Hall & Ponton, 2005; 

Parker, 2005).   

The main dependent variable of interest in this study was success in the 

foundational business mathematics course (BUS 111) at URI.  For this research study, I 

used the term success to describe a passing grade in the BUS 111 course (a grade of C or 

better, which equates to a 72.5% or above), though numeric averages have been included 

in the regression model for more accurate predictions.  I have chosen this procedure for 
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measuring success because if a student does not receive a passing grade in this course, 

they are not permitted to continue on in a College of Business degree program without 

retaking the course. Many students who earn below a C decide to switch out of the 

business major and start a new major at URI or transfer to a different university (F. 

Budnick, personal communication, January 3, 2015).  Furthermore, the current Common 

Core State Standards and the curriculum used in most K-12 schools across the nation 

implements the Partnership for Assessment of Readiness for College and Careers 

(PARCC) assessment to evaluate whether students are prepared for college.  According 

to the PARCC administrators and PARCC documentation, students who earn a 4 (out of 

5) or above in mathematics on this assessment “have approximately a 0.75 probability of 

earning college credit by attaining at least a grade of C” in freshmen-level college 

mathematics courses and are thus deemed “college- and career-ready” (“PARCC 

College- and Career-Ready Determination Policy”, 2013, p. 4).  Therefore, using a grade 

of C or better to indicate success seems complementary to both URI’s College of 

Business and PARCC standards. 

I also examined the relationship between the students’ perceived effectiveness of 

the BUS 111 instructor and each of the independent variables using correlational 

analysis. The purpose of the multiple regression analysis was to examine possible 

predictive relationships between these independent variables and the dependent variables, 

as described below.   

Data Sources and Instrumentation 

A few different instruments were used in this study.  First, I obtained permission 

from the Institutional Review Board (IRB) at URI to access data from the university’s 

student information system, called eCampus, such as identified gender, mathematics SAT 

scores, and high school GPA.  I also received their general approval to conduct this 

research study.  Course averages in BUS 111 were obtained via SAKAI (a common 

Collaboration and Learning Environment which allows instructors to track students’ 
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grades throughout the semester) and/or the instructor’s personal grade book, if SAKAI 

was not used.  The mathematics department provided me with student scores on the 

placement exam.   

I also used a combination of pre-existing scales and inventories to examine 

students’ attitudes towards mathematics and students’ mathematical anxiety (see 

Appendix C and Appendix D).  Authors’ permission for use of these materials was 

obtained (see Appendix H and Appendix I).  Students were also asked for permission to 

access their demographic data in eCampus and their grade information in SAKAI and use 

their responses to these survey materials.  Students were asked to complete a short 

questionnaire asking them to report the number of hours they devoted or planned to devote 

to their BUS 111 course each week outside of class, how many BUS 111 classes they 

missed or expected to miss throughout the semester, and their perceived effectiveness of 

the instructor (see Appendix A and Appendix B).  The instruments used to measure 

students’ attitudes towards mathematics (including self-confidence) and mathematics 

anxiety were the Attitudes Towards Mathematics Inventory (ATMI) and the Mathematics 

Anxiety Scale (MAS), respectively, described below. 

Attitudes Towards Mathematics Inventory 

The ATMI was originally designed by professor Martha Tapia to assess student 

attitudes towards mathematics using a series of forty Likert-scale questions ranging from 

“strongly agree” to “strongly disagree” (see Appendix C for a copy of this inventory). 

These questions were designed to measure four different facets of student attitude in 

mathematics:  self-confidence, value, enjoyment, and motivation (Tapia, 1996).  Attitude 

towards mathematics was defined as a student’s feelings or thoughts towards 

mathematics, specifically examining the value a student attaches to the subject and their 

confidence level (Tapia & Marsh, 2004).  The ATMI asks student participants to rate 

statements such as “I believe I am good at solving math problems” and “I can think of 
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many ways that use math outside of school” (Tapia & Marsh, 2004, p. 21) to measure 

their self-efficacy in mathematics and the value they attach to the subject. 

The ATMI has a reliability coefficient of 0.97 with college students (Tapia, 

1996), which is considered very strong (Fraenkel et al., 2011).  Both content and 

construct validity of the instrument have been confirmed.  Content validity was 

established by receiving expert opinions and feedback, namely from experienced 

educators and learning specialists (Tapia, 1996).  Construct validity was established with 

item homogeneity through the Statistical Analysis System software (SAS) and factor 

analysis (Tapia, 1996).  The instrument consists of eleven negatively phrased statements 

and twenty-nine positively phrased statements.  To score the negatively phrased 

statements, “strongly disagree” corresponds to a score of five and “disagree”, “neutral”, 

“agree”, and “strongly agree” correspond to scores of four, three, two, and one, 

respectively (Tapia & Marsh, 2004).  To score the positively worded statements, the 

reverse scoring method is used, so that a high final score corresponds to a favorable 

attitude towards mathematics.   

Mathematics Anxiety Scale 

The MAS was designed to assess student anxiety in mathematics using a series of 

fourteen Likert-scale questions ranging from “strongly agree” to “strongly disagree” (see 

Appendix D for a copy of the scale; Mahmood & Khatoon, 2011). This instrument was 

designed as a revision of the Mathematics Anxiety Rating Scale (MARS) to better suit 

older students (high school seniors and college students).  Mathematical anxiety was 

defined as “the panic, helplessness, paralysis and mental disorganization that arises 

among some people when they are required to solve a math problem” (Tobias & 

Weissbrod, 1980, p. 65).  The MAS asks student participants to rate statements such as “I 

feel worried before entering a mathematics class” and “I am afraid to ask questions in 

math class” (Mahmood & Khatoon, 2011, p. 178) to measure their anxiety based on the 

constructs of mathematical anxiety described in more detail in chapter three.   
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This instrument has a Cronbach’s alpha internal reliability coefficient of 0.87 with 

college students and a split-halves reliability coefficient of 0.89 (Betz, 1978; Mahmood & 

Khatoon, 2011), which are considered strong (Fraenkel et al., 2011).  Content, construct, 

and criterion validity were confirmed by Mahmood and Khatoon (2011), who first 

worked with mathematics educators and other experts to ensure the instrument was 

measuring mathematics anxiety, and then worked with test participants to verify the 

results until the fourteen final questions were agreed upon.  The MAS consists of seven 

positively worded statements and seven negatively worded statements.  To score the 

positively worded statements, “strongly disagree” corresponds to a score of five and 

“disagree”, “neutral”, “agree”, and “strongly agree” correspond to scores of four, three, 

two, and one, respectively (Mahmood & Khatoon, 2011).  To score the negatively 

worded statements, the reverse scoring method is used, so that a high final score 

corresponds to high mathematics anxiety.   

Data Collection 

During the first and last week of class in the Fall 2015 semester, all students in BUS 

111 were invited to take the survey and complete the inventories presented in Appendices A 

through D, as described above.  Frequent quizzes and in-class assessments were typical in 

the BUS 111 course, so few students were expected to be absent (15 of the 266 students, or 

5.6%, were absent during the pre-survey administration and 27 of the 258 students, or 

10.5% were absent during the post-survey administration).  Students who were absent 

during the pre- and post-surveys did not have an opportunity to participate. Though 266 

students were initially enrolled in BUS 111 at the time of the pre-survey administration, 

only 258 students were enrolled in the course during the post-surveys, and eleven of those 

students were not yet enrolled during the pre-survey administration.  Therefore, paired pre- 

and post-results for those students were not available.  However, students who completed 

only one of the two surveys were still included in the multiple regression analysis with their 
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final course average included, as this analysis did not require both pre- and post-survey 

results. 

Students were asked to use their university ID number as an initial identifier, but 

were assured that the surveys would not be examined until final grades had been submitted 

to encourage their honesty. General information regarding the study was provided to 

students via e-mail prior to the first class of the semester.  Specifically, an e-mail was sent to 

all BUS 111 students from the researcher one week before classes began (see Appendix E). 

Then, during the first week of classes and again during the last full week of classes, a short 

cover letter and consent form described the study to the participants in detail and explained 

their choice in participation (see Appendices A and B).  The researcher read certain portions 

of the consent form to the students for clarity before administering the surveys (see the 

verbal scripts submitted to the IRB in Appendix J).  Because two different instruments were 

being used, there was a chance that the order in which students completed the inventories 

may have influenced the results (Fraenkel et al., 2011).  To account for this potential 

instrumentation threat to internal validity, half of the total number of students surveyed were 

randomly chosen to complete the ATMI first and the other half completed the MAS first.  

Students were not aware of these random assignments, as both inventories were given 

together with the consent form simultaneously, just in varying orders from student to 

student. 

An SPSS worksheet was created and student responses were entered into the 

worksheet with student ID numbers used as initial identifiers.  Student pre- and post-

responses to the three survey questions, their ATMI results, and their MAS results were 

inputted into SPSS as variables “Time_Spent_Pre”/“Time_Spent_Post”(time expected to 

spend/spent working on mathematics for BUS 111 outside of class per week), 

“Attendance_Pre”/ “Attendance_Post” (number of BUS 111 classes expected to 

miss/missed over the course of the semester), “Instructor_Pre”/ “Instructor_Post” 

(perceived effectiveness of the instructor), “Math_Attitude_Pre”/ “Math_Attitude_Post” 
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(confidence and attitude towards mathematics from the ATMI responses), and 

“Math_Anxiety_Pre”/“Math_Anxiety_Post” (mathematical anxiety from the MAS 

responses), respectively.   

Then, the same ID numbers were run through URI’s PeopleSoft software on 

eCampus to obtain gender (dummy coded with “0” indicating male and “1” indicating 

female), high school GPA, mathematics SAT score, and score on the university’s 

placement exam, which were added to the SPSS worksheet.  These were inputted as 

variables:  “Gender”, “HS_GPA”, “Math_SAT_Score”, and “Placement_Score”, 

respectively.  Finally, student final averages from the instructors’ BUS 111 online grade 

books (“BUS111_Course_Average”) were entered along with which of the three 

instructors they were assigned (“Instructor”).  Upon completion of this step, student 

identities were no longer needed, so student ID numbers were eliminated from the 

worksheet, recoded as a random number.  The scores for each variable were used together 

as predictors in the initial multiple regression analysis against the dependent variable, 

final average in BUS 111. 

Ethical Considerations 

There were few anticipated possibilities of harm or deception for the people who 

participated in this study. My research questions were stated up front and my reasoning 

for performing this research was openly shared with my participants.  However, there 

were a few issues of confidentiality with this study.  I surveyed students from URI’s 

College of Business, where I am an instructor.  However, none of the students surveyed 

had me as their instructor at the time of the data collection or analysis.  I assured students 

that the data would not be analyzed until after final course grades were submitted and 

refusal to participate in the study would in no way affect their grade in the course or their 

academic standing.   

Furthermore, in order to align survey data with course grades, I needed to ask for 

and obtain student ID numbers, as explained above. I kept a list of the assigned numbers 
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in a separate, locked file in my private office in order to protect confidentiality after 

entering the data.  Names were never used.  A question on the survey/consent form 

requested permission to use students’ responses in the research study (see Appendices A 

and B).  If a student left this question blank or did not sign the consent form, their 

responses were not used in the analysis.  Students also were reminded that they had the 

right to withdraw from the study at any time if they decided they did not want their 

information to be used.   One student did exercise this right and withdrew their consent 

via email. 

Data Analysis 

To address the overarching research question, multiple regression was used to 

identify significant predictor variables and to examine the overall predictive relationship 

among these variables (Fraenkel et al., 2011; Huck, 2012; Weiss, 2008).  Once student ID 

numbers were removed from SPSS so that students were no longer identifiable, an initial 

multiple regression analysis was run with all of the independent variables to examine the 

overall predictive relationship.  Initial procedures were also run in SPSS to ensure 

normally distributed variables and to look for multicollinearity.  It was anticipated, for 

example, that high correlations may have existed between mathematics SAT score and 

high school GPA, as well as attitudes towards mathematics and mathematical anxiety 

(Hall & Ponton, 2005; Smith & Schumacher, 2005).  Thus, precautions needed to be 

taken in examining relationships with these variables, as severe multicollinearity leads to 

less precise estimates of the predictor’s impact on the dependent variable, while holding 

other variables constant (Kutner et al., 2002; Weiss, 2008).  Finally, during the initial 

data analysis process, means and standard deviations for each variable were computed in 

order to describe the overall nature of each predictor variable examined, examine 

normality of the data, and to better understand the specific sample chosen.  The results 

obtained are described in detail in chapter five (the presentation of the findings and 

results). 
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I began by using simultaneous (“enter all”) multiple regression, rather than step-

wise or hierarchical, so that I could determine which of the variables examined, if any, 

were useful predictors of BUS 111 final course grade.  After the initial multiple 

regressions were run in SPSS, the independent variables which had already been tested 

and found to be predictive in previous research (gender, mathematics SAT scores, 

placement exam scores, and high school GPA) were placed in the model first to 

determine how much of the variance in student BUS 111 grades could be predicted by the 

other, less researched variables.  I proceeded by placing each of the other independent 

variables into the model in various combinations, to see which were the strongest 

predictors.   

To address the first research sub-question, I ran a series of two-sample t-tests in 

order to determine whether significant differences existed between males and females on 

each of the predictor variables.  If significant differences existed on multiple independent 

variables, I planned to create two regression models on the dependent variable, one 

specifically for males and one for females, to see if the models differed and yielded 

higher R2 values.  Current literature suggests that the models may have been different 

based on gender and therefore I knew I may have been able to produce higher 

coefficients of determination for the multiple regression equations by separating the 

genders (Berube & Glanz, 2008; Blaszczynski, 2001; Leaper et al., 2012; Smith & 

Schumacher, 2005). 

Similarly, to address the second and third research sub-questions, I ran a series of 

paired t-tests to determine whether statistically significant differences existed in students’ 

ATMI and MAS scores before and after taking the BUS 111 course.  This allowed me to 

see how students felt upon entering the course and how those feelings may have changed 

over time upon finishing the course.  Analyzing these results also helped me paint a 

general picture of students who were taking BUS 111 so that I could better understand 

the sample in question.  To address the final research sub-question, I examined the 
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correlation coefficients describing the relationships between students’ perceived 

instructional quality and:  their success in the course, their ATMI scores, and their MAS 

scores after taking the course.  

After controlling for the non-cognitive/non-affective variables (mathematics SAT 

score, high school GPA, gender, and mathematics placement exam score), which have 

each been shown to influence mathematics grades in college to some degree (Smith & 

Schumacher, 2005; Truell & Woosley, 2008), I hypothesized that students’ attitudes 

towards mathematics, the number of hours they spent on mathematics outside of class per 

week, their class attendance, and their mathematical anxiety would be significant in 

predicting their achievement in BUS 111. Before conducting this research, I also 

anticipated that how students perceived the effectiveness of their BUS 111 instructor 

would positively correlate with success in the course and negatively correlate with their 

mathematical anxiety. I expected students’ mathematical anxiety and attitudes towards 

mathematics might change over the course of the semester.  I also hypothesized that 

significant differences may have existed between mathematical success in male and 

female students, as supported by current literature (Smith & Schumacher, 2005; Truell & 

Woosley, 2008).  

Limitations of Multiple Regression and Survey Design 

While using a quantitative approach allowed me to survey a relatively large sample 

and determine predictive relationships, multiple regression and correlation analyses have 

their limitations.  I examined eight independent variables that I chose based on the current 

literature available as well as my theoretical framework/personal worldview.  Inherent bias 

exists in the variables I chose to examine (Creswell, 2014).  Nonetheless, there were likely 

other factors, which I did not include in my model, which might also have influenced each 

student’s achievement in mathematics.  In other words, their final average in BUS 111 

was likely not entirely due to the eight specific variables I named.  A student’s course 

grade may have been impacted by their experiences outside of academia, their advocacy 
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skills, their innate ability in mathematics, access they had to tutoring, their socioeconomic 

status, study skills, extracurricular activities, level of parental involvement, sleeping/eating 

habits, etc. These factors may have also impacted their course grade, and I did not include 

these variables in my model.   

Further, timing always plays a limiting role in survey research, as the results 

represent only a snapshot of the specific times in which the students were surveyed 

(Fraenkel et al., 2011). If students had recently had a particularly good or poor experience 

in mathematics, had a good or bad experience with the instructor, broke up with their 

significant other, forgot to eat lunch, failed an exam in another course, pulled an all-

nighter to write a paper, got in a fight with their roommate, etc., then they may have 

answered the survey questions differently than they would have on a different day or 

under diverse circumstances.  The results of my multiple regression analysis may have 

been affected by these confounding factors, which could have impacted the overall 

internal validity and reliability of this research (Fraenkel et al., 2011; Kutner et al., 2003).  

These personal student details will remain unknown in this multiple regression analysis, as 

the participants were not observed or interviewed for more detailed information, as they 

might have been in a qualitative or mixed-methods methodological design.   

 The results of survey research are only ever as good as the specific survey 

instruments used.  I chose instruments with high reliability and validity measures, but I 

used these instruments simultaneously, which may have impacted the results, as 

explained in more detail above. Finally, I assume students have responded honestly to the 

survey questions I presented, but lack of honesty in self-reported results could be another 

limitation (Creswell, 2014; Fraenkel et al., 2011).  I tried to ensure honesty by preserving 

confidentiality, waiting until after course grades were reported to run the analyses, and 

using student ID numbers rather than names to protect participants’ privacy throughout 

the study. 
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 A potential delimiting factor, which may also pose a threat to internal validity, is 

students trying to “please” the researcher due to subject attitudes and characteristics 

(Fraenkel et al., 2011).  For example, students may have responded to the surveys 

administered in a particular way because they thought certain results would be more 

desirable to the researcher.  I may have prevented this, at least to some degree, by not 

teaching this BUS 111 course during the time of the research and by assuring students 

that the post-surveys would not be opened or analyzed until the final semester grades had 

been submitted.  Waiting until the end of the semester, however, posed a potential 

mortality threat to internal validity, as students took this post-survey during the last full 

week of classes (Fraenkel et al., 2011).  Students who decided to drop the course before 

the end of the semester, perhaps due to struggle, were not included in the sample.  This 

may have caused final averages to appear inflated.   

Another delimitation of this study was the specific sample selected.  The sample 

was chosen through convenience sampling and thus the results that come out of this study 

may not be able to be generalized to populations outside of URI’s College of Business 

students.  I have made no attempts to generalize further and have only made suggestions 

for students, staff, and faculty members within this community.  It is possible that these 

results are generalizable to other business schools and colleges or to other majors for 

students at URI who are required to take a similar entry-level mathematics course.  

However, my goal was to better prepare URI business students for their mathematics 

courses, which is why this sample was chosen.  

Insider Positionality 

As an instructor for the College of Business Administration and as a University of 

Rhode Island graduate, I have an insider position leading me to carry certain beliefs and 

expectations, which I needed to consider as I collected and analyzed this data. While I am 

usually assigned to teach sections of BUS 111 myself, I did not teach any sections of this 

course at the time of the study.  This way, none of the students who were enrolled in BUS 
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111 would have me as their instructor during the Fall of 2015 when this data was 

collected, which accounts for some of my researcher positionality.  Still, I had a priori 

expectations about what I might find in my research, which I clarified above as 

hypotheses.   

As I analyzed the data collected, I kept these limitations in mind.  As a post-

positivist, I hoped to find relationships that may help explain achievement in BUS 111.  

However, I was not performing an experimental study, and with many factors in place that 

were not controlled for, I could not assume that my findings would prove causal 

relationships between any of the variables (Fraenkel et al., 2011).  Further, as a pragmatic 

researcher, I hoped to develop models that could be applied to educational settings.  A 

regression equation has been produced through the multiple regression analysis that could 

be used to predict student achievement (see chapter five for details).  Using a relatively 

large sample size (n = 247), the regression equation can help instructors understand some 

of the many factors that may influence a student’s outcome in the BUS 111 course.  Still, I 

would not expect this equation to predict exact averages for all students taking BUS 111. 

For some students, the equation may not be predictive at all (Weiss, 2008).  As a student-

centered researcher, I also know that I cannot expect that the variables, which I found to 

be significant in my model, will have the same degree of significance with each individual 

student or group of students.  Still, I believe that gaining insight on some of the likely 

predictors of achievement will allow instructors and advisors to help guide students on 

their journeys through business mathematics with the tools they may need in order to find 

success. 
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CHAPTER FIVE: 
FINDINGS/RESULTS 

All students enrolled in BUS 111 at the University of Rhode Island during the Fall 

2015 semester were invited to take a pre-survey during the first week of classes and a 

post-survey during the last week of classes, as described in the previous methodology 

chapter.  A total of 179 students volunteered to participate in both surveys, with a total of 

224 completing the pre-survey and 202 completing the post-survey.  Thus, there were 

247 total unique participants (224 + 202 – 179 overlapping).  Once entered into SPSS, 

those results were analyzed according to the research questions posed in chapter three 

(the review of the related literature).  Those research questions are restated and addressed 

throughout the remainder of this chapter and other observations about the specific 

findings of this research are identified and analyzed. 

Specifically, I begin this chapter with descriptive statistics about each of the 

variables examined as well as other descriptive, demographic information about the 

sample to present an overall picture of who these participants were. Then, I describe the 

average time students predicted they would spend on mathematics over the course of the 

semester versus the time they actually reported spending.  I then examine their average 

high school GPAs, SAT scores, and placement exam results.  Following that, I address 

potential concerns with multicollinearity and group differences.  Then, I discuss the 

results of the various paired t-tests and analyze those differences.  I follow by examining 

the results of various multiple regression analyses:  first, I verify that the assumptions for 

multiple regression were met, then, I examine the enter-all (simultaneous) results, 

followed by the step-wise results, and ending with the block-wise (hierarchical) results.  I 

ran separate multiple regression analyses for: (1) non-affective measures and affective or 

cognitive measures; (2) each of the three individual exams in BUS 111; (3) male students 

and female students; and (4) each of the three BUS 111 instructors.  Thus, these results 

and the corresponding equations are also discussed.  Finally, I describe the results of the 

correlational analyses, looking at the relationship between perceived instructor 
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effectiveness and:  students’ ATMI scores, students’ MAS scores, how much time 

students devoted to mathematics, and their BUS 111 final averages.  Below, I have 

constructed a map (see Figure 5) outlining the remainder of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description of Sample 

Of the students participating in this survey, 64% were males and 36% were 

Male	
64%	

Female	
36%	

Gender of Participants	 Race of Participants	
White (84.4%)	

Hispanic (5.8%)	

Asian (3.1%)	

Non-Res. (2.9%)	

Black (2.2%)	

Undisclosed (1.1%)	

2+ Races (0.5%)	
Figure 6.  Sample Demographics:  Gender and Race of Participants 

Figure 5.  Map of Statistical Analyses 
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Male	
52%	

Female	
48%	

Gender of Business 	
Students Nationally	 Race of Business Students Nationally	

White (64%)	

Hispanic (9%)	

Asian (7%)	

Non-Res. (6%)	

Black (12%)	

Undisclosed (1%)	

2+ Races (1%)	

females.  In addition, 84.38% of the participants were White, 5.8% were Hispanic, 2.23% 

were Black, 3.13% were Asian, 0.45% identified as two or more races, 2.88% were non-

residential aliens, and 1.14% chose not to disclose racial information. See the charts 

below (Figure 6) for a visual representation of the demographics of this sample.  

 

As described in chapter four, this sample was fairly representative of national 

statistics for business students.  In the pie charts in Figure 7, shown below, the national 

demographics are presented for comparative purposes.  

 

 

 

 

 

 

Figure 7.  National Demographics:  Gender and Race of Business Students 



 114 

0	

20	

40	

60	

80	

100	

120	

140	

0	 1-3	 3-5	 5-7	 8 or more	

Fr
eq

ue
nc

y	

Hours Spent on BUS 111 per Week	

Reported Hours Spent Distribution	

0	

20	

40	

60	

80	

100	

120	

140	

0	 1-3	 4-6	 7 or more	

Fr
eq

ue
nc

y	

Number of Absences	

Reported Absences Distribution	

Time Devoted to Mathematics (Averages) 

 On the surveys given during the first week of the semester, students were asked to 

report the number of BUS 111 classes they expected to miss during the semester and how 

many hours per week they anticipated they would spend on BUS 111 outside of class.  

On average, students expected to spend between three and four hours (mean = 3.79 

hours) per week working outside of class and expected to miss fewer than two classes 

during the semester (mean = 1.13 classes).  On the BUS 111 syllabus (which was 

explained to students during the first class of the semester, two days before this pre-

survey was administered), the BUS 111 instructors indicated that students should expect 

to spend 6-9 hours per week on BUS 111 outside of class.  Less than 20% of students 

expected to spend that much time, and less than 25% reported actually spending that 

much time.  The graphs below (Figures 8 and 9) show the general distribution of the 

number of hours students expected to spend on mathematics outside of class time and the 

number of classes students expected miss over the course of the semester, respectively.  

On the post-surveys given at the end of the semester, students were asked to self-

report how many hours per week, on average, they spent working on BUS 111 outside of 

Figure 8. Hours Per Week Students 
                Expected to Spend on BUS 111 
 

Figure 9. Number of BUS 111 Classes  
                Students Expected to Miss  
 

Figure 11. Number of BUS 111 Classes Students 
    Reported Missing  
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Figure 10. Hours Per Week Students Reported 
    Spending on BUS 111 
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class and the actual number of BUS 111 classes they missed.  On average, students spent 

between three and four hours per week working on mathematics outside of class (mean = 

3.51 hours) and reported missing between one and two classes over the course of the 

semester (mean = 1.59 classes). After matching pre- and post-survey results, paired t-tests 

revealed significant differences between how many hours students originally expected to 

spend on BUS 111 each week and how much time they actually spent on the course (t = 

3.109; p = 0.002).  Similarly, significant differences existed between the number of 

classes students expected to miss versus how many classes they actually missed over the 

course of the semester (t = -3.939 p = 0.000).  Specifically, students spent less time than 

anticipated working on mathematics and missed more classes than they originally 

predicted.  The graphs below (Figure 10 and Figure 11) show these general post-survey 

distributions of time spent and classes missed, respectively. 

 

 

 

 

 

 

 

 

High School GPA, SAT Score, and Placement Exam Averages  

 All students admitted into the College of Business Administration at URI are 

required to submit high school transcripts and standardized test scores.  The majority of 

these students take the SAT, but the ACT is also accepted.  Since this is only the first 

year URI’s mathematics department has enforced the placement exam in a proctored 

setting, business faculty and staff members were unsure of the validity of the placement 

exam.  Thus, business majors were still not required to take this placement test for 

42% 

30% 

15% 
7% 
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37% 

53% 

   9% 

1% 
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admission and so, 23% of all BUS 111 students did not choose to take the placement 

exam and instead chose their initial classes based on their high school coursework and 

SAT results (T. Bella & K. Conlon, personal communication, October 13, 2015).  

 Of the BUS 111 student participants who did take the placement exam, the 

average score was a 3.5 out of 7.  This means that the average placement group was 

between group B and group B/C (see Table 4).  As described in chapter three, on the 

mathematics placement exam, there are 7 categories of placement.  Those groups are 

described again very briefly in Table 4 below: 

Placement 
Group 

Numeric 
“Score” Suggested Course(s) 

A 1 MTH 099 
(Basic Algebra and Trigonometry) A/B 2 

B 3 MTH 101, MTH 107 
(College Algebra or Finite Mathematics) B/C 4 

C 5 MTH 110, MTH 111 
(Mathematical Foundations for Business or Pre-Calculus) C/D 6 

D 7 BUS 111, MTH 131, MTH 141 
(Business Analysis and Applications or Calculus) 

 

Table 4. URI Mathematics Placement Score Breakdown 
Note:  Courses listed in bold, italicized font are designed for URI’s College of Business Administration 
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According to the mathematics department and the table above, students who want to 

enroll in BUS 111 should be placing into group D.  Of all of the participants enrolled in 

BUS 111 over the Fall 2015 semester who took the placement exam, only 0.5% (one 

student) placed into group D.  In fact, almost all of the students who took the placement 

test placed into lower groups, indicating they should have been enrolled in lower-level 

courses, according to the exam.  The overall placement distribution is shown in the chart 

below (Figure 12). 

 

 

 

 

 

 

 

Figure 12.  Distribution of Participants’ Mathematics Placement Scores  

The average high school GPA of students sampled from BUS 111 was a 3.31 

(standard deviation, σ = 0.451) on a 4.6 scale, which is the scale currently used by the 

URI admissions department (“University of Rhode Island Office of Admission”, 2015).  

Some high schools do not use the typical 4.0, 4.3, or 4.6 scales to calculate GPA, so these 

scores were normalized by URI admissions to fit the 4.6 scale (Huck, 2012; Weiss, 

2008). This 3.31 out of 4.6 average translates to a GPA of approximately 2.88 on a 4.0 

scale, and is lower than the URI admissions average of 3.48. The average mathematics 

SAT score was a 562 out of 800 (σ = 57.635), which is higher than the average URI 
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student, who earned a 559 on the mathematics portion of the SAT (“University of Rhode 

Island Office of Admission”, 2015).  The average total SAT score of this sample was a 

1458 out of 2400.  Students who took the ACT (only 4.86% of the sample) earned an 

average of 25 out of 36 on the mathematics portion as well a total composite score of 25 

out of 36, which is typical for URI students (“University of Rhode Island Office of 

Admission”, 2015).  ACT scores were standardized to fit the same scale as the SAT.  The 

distribution of high school GPAs and SAT scores for this sample are shown below 

(Figure 13 and Figure 14, respectively).  

 

ATMI 

and MAS Averages 

 The Attitudes Towards 

Mathematics Inventory (ATMI) has 40 Likert-scale questions that range in scoring value 

from 1-5 (see Appendix C).  Thus, the lowest possible score (indicating a very 

unfavorable attitude towards mathematics) is a 40 and the highest possible score 

(indicating a very favorable attitude towards mathematics) is a 200.  Of the students 

sampled, the average ATMI score on the pre-survey was a 142.21 (σ = 19.8), which 
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Figure 13.  Distribution of Participants’ High School GPAs      Figure 14.  Distribution of Participants’ SAT Scores 
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indicates a relatively positive initial attitude towards mathematics.  Similarly, the 

Mathematics Anxiety Scale (MAS) has 14 Likert-scale questions that range in scoring 

value from 1-5 (see Appendix D).  Thus, the lowest possible score (indicating low 

mathematical anxiety) is a 14 and the highest possible score (indicating high 

mathematical anxiety) is a 70.  Of the students sampled, the average MAS score on the 

pre-survey was a 37.61 (σ = 8.6), which indicates a relatively moderate level of 

mathematical anxiety.  The graphs below (Figure 15 and Figure 16) show the general 

distribution of students’ pre-ATMI scores and pre-MAS scores, respectively.    

 

At the end of the semester, the average ATMI score on the post-survey was a 

141.65 (σ = 22.7), which continues to indicate a relatively positive attitude towards 

mathematics upon completion of BUS 111.  However, these are slightly less favorable 

attitudes towards mathematics than existed before the class began.  Similarly, the average 

MAS score on the post-survey was a 37.48 (σ = 9.7), which also continues to indicate a 

relatively moderate level of mathematical anxiety.  In general, average mathematical 
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anxiety was slightly lower upon completion of BUS 111 than it was before the class 

began.  The graphs below (Figure 17 and Figure 18) show the general distribution of 

students’ post-survey ATMI scores and MAS scores, respectively.  The specific, paired 

changes in the ATMI and MAS results are described in detail in the following section. 

 

 

 

 

 

 

 

 

 

As described in the 

methodology chapter, both of these instruments were shown to have high reliability in 

other research studies (Betz, 1978; Mahmood & Khatoon, 2011; Tapia, 1996).  

Specifically, the ATMI was shown to have an internal reliability of α = 0.97 (Tapia, 

1996) and the MAS was shown to have an internal reliability of α = 0.87 (Betz, 1978; 

Mahmood & Khatoon, 2011).  Still, it was necessary to check the reliability of these 

instruments for this specific research to ensure they were reliable measures with this 

sample.  Thus, reliability statistics were run in SPSS on each instrument.  Similar results 

were found as in previous research with these instruments.  With this sample, the ATMI 

had a Cronbach’s alpha reliability rating of α = 0.956 and the MAS had a Cronbach’s 

alpha reliability rating of α = 0.912, which are both considered extremely strong and 

indicate high reliability (Fraenkel et al., 2011). 

Perceived Instructor Effectiveness 

Figure 17.  Distribution of ATMI Post-Survey Scores Figure 18.  Distribution of MAS Post-Survey Scores 
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 In the beginning of the semester, participants in BUS 111 were asked how 

effectively they believed their instructor would be able to deliver the course material on a 

1-5 scale, with 1 being not effective and 5 being very effective.  On average, students 

rated their instructors a score of 4.28.  Specifically, Instructor 1 was rated 4.54 out of 5 

on average (n = 114), Instructor 2 was rated 4.09 out of 5 on average (n = 83), and 

Instructor 3 was rated 3.78 out of 5 on average (n = 27).  Thus, after the first two 

meetings with their instructors, more students tended to perceive Instructor 1 as effective.  

However, nearly all students rated their instructor’s effectiveness with a 4 or 5 in the 

beginning of the semester.  See the chart below (Figure 19) to observe the general 

distribution of perceived instructional quality.  

 

 

 

 

 

 

On the post-surveys, participants were asked to rate how effectively they believed 

their instructors presented the material over the course of the semester.  On average, 

students rated their instructors a 4.22 out of 5. Instructor 1 was rated 4.57 on average (n = 

106), Instructor 2 was rated 3.9 on average (n = 79), and Instructor 3 was rated a 3.53 on 

average (n = 17).  Thus, after the entire semester with the instructors, more students still 

tended to perceive Instructor 1 as the most effective.  Interestingly, though the overall 

averages were approximately the same, in the post-surveys, there were a larger number of 

low ratings.  The specific statistical changes in how students perceived their instructor’s 

Figure 19.  Distribution of Students’ Initial Perception of Instructor Effectiveness 
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effectiveness over the course of the semester are described in the following section.  See 

the chart below (Figure 20) to observe the distribution of perceived instructional quality 

at the end of the semester. 

 

 

 

 

 

 

 

 
 

Final Course Averages in BUS 111 

Upon completion of the course, BUS 111 instructors were asked to send students’ 

final grades to the researcher.  While letter grades were provided, course averages 

(rounded to two decimal places) were specified as well, in hopes of leading to more 

accurate prediction equations.  The overall course average for all students during the Fall 

2015 semester was a 74.593% (corresponding to a “C” letter grade)  The overall 

distribution of the grades is shown below (Figure 21).  Additionally, six students 

(2.256%) withdrew from the course or dropped the course before the end of the semester. 

Thus, these final averages may appear slightly inflated, as those students who drop the 

course generally do so because they are struggling with the course material.  Below the 

graphs is a table (Table 5) detailing the overall final course grades in BUS 111.  The table 

has a bolded line indicating that all students below the line earned unsuccessful grades. 

 

 

 

 

Figure 20.  Distribution of Students’ Final Perception of Instructor Effectiveness 
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Placement exam 

scores were examined for general validity and accuracy.  In addition to the correlations 

and regressions investigating placement scores, described later in this chapter, I also 

examined the average final course grade in BUS 111 for each placement group.  I found 

the following results: 

Placement Group Average Course Grade 
Did not take 66.601          (D) 
A 70.429          (C-) 
A/B 73.257          (C) 
B 70.620          (C-) 
B/C 82.003          (B-) 

C 83.383          (B) 
C/D 87.169          (B+) 
D 95.610          (A) 

 

Table 6.  Final Averages in BUS 111 and Placement Results 

Letter Grade 
Earned 

Number of 
Students 

Percentage of 
Students 

Number of 
Students 

Percentage of 
Students 

A 31 11.524% 
54 20.074% 

A- 23   8.550% 
B+ 21   7.807% 

71 26.394% B 31 11.524% 
B- 19   7.063% 
C+ 18   6.691% 

48 17.844% 
C 30 11.152% 
C- 16   5.948% 

96 35.688% 
D+ 10   3.717% 
D 24   8.922% 
F 46 17.100% 

Figure 21.  Distribution of Students’ Final Averages in BUS 111 

Table 5.  Breakdown of Students’ Final Letter Grades in BUS 111 
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Thus, it seems that on average, students in this research who took the mathematics 

placement exam and earned higher placement scores also earned higher final grades in 

BUS 111.  Students who did not take the placement exam were, on average, unsuccessful 

in the course (earning a C- or lower).  This may be easier to see in the following graph 

(Figure 22), plotting placement group against final average earned in BUS 111:  

 

 

 

 

 

 

 

Multicollinearity and 

Group Means Concerns 

 Many of the predictor variables examined in this research were anticipated to 

correlate with one another on a statistically significant level (α = 0.01).  Therefore, 

multicollinearity was an initial concern and statistics were performed in SPSS to 

determine whether the regression analysis was affected by these correlations (Chen et al., 

2003; Leaper et al., 2012).  Strong correlations among the predictor variables can lead to 

less accurate predictions in the multiple regression analysis (Hair et al., 1998; Huck, 

2012; Weiss, 2008).   

Correlations and Multicollinearity 

Significant correlations among some of the independent variables did exist.  As 

anticipated, student participants’ ATMI results were strongly, negatively correlated with 

their MAS results (r = -0.879; p = 0.000), indicating that, in general, students with higher 

levels of mathematical anxiety also tended to have less favorable overall attitudes 

Figure 22.  Final Averages in BUS 111 and Placement Results 
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towards mathematics. In addition, students’ mathematics placement exam scores were 

negatively correlated with their mathematical anxiety (r = -0.319; p = 0.000) and were 

positively correlated with:  students’ attitudes towards mathematics (r = 0.273; p = 

0.000), students’ mathematics SAT scores (r = 0.385, p = 0.000), and students’ high 

school GPAs (r = 0.200, p = 0.008).  Further, the student participants’ SAT scores were 

negatively correlated with their mathematical anxiety levels (r = -0.203, p = 0.003).  In 

general, students with lower test scores from high school tended to hold less favorable 

attitudes towards mathematics and had greater mathematical anxiety.   

On the post-surveys, the amount of time student participants’ reported working on 

mathematics over the course of the semester was negatively correlated with post-survey 

ATMI results (r = -0.242; p = 0.001) and positively correlated with post-survey MAS 

results (r = 0.308; p = 0.000), indicating that students who spent more time working on 

the course also tended to have less favorable attitudes towards mathematics and higher 

levels of mathematical anxiety.  Similarly, on the post-surveys, the amount of time 

participants reported working on mathematics over the course of the semester was 

negatively correlated with both their SAT scores (r = -0.235; p = 0.000) and their 

placement scores (r = -0.259, p = 0.001), indicating that those with lower test scores 

tended to spend more time working on mathematics.  Finally, students’ high school GPAs 

were negatively correlated with their self-reported number of absences (r = -0.282; p = 

0.000), indicating that students with lower high school GPAs tended to miss more BUS 

111 classes than their peers.  

As recognized from the low correlation coefficients presented, even though these 

correlations were all statistically significant, the majority of the correlations were fairly 

weak (most were between -0.3 < r < 0.4).  Before specifically examining collinearity 

statistic requirements using SPSS, the rule of thumb is generally that correlation 

coefficients between -0.7 < r < 0.7 will likely not warrant regression model concerns 

(Myers, 1990).  Thus, the only correlation that initially concerned me in terms of 
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multicollinearity was the strong, negative relationship between student attitudes towards 

mathematics and their mathematical anxiety.   

Because of these correlations, tolerance levels and variance inflation factors (VIF) 

were examined in SPSS to determine whether certain variables needed to either be 

eliminated from the model or combined with other variables due to multicollinearity 

concerns (Huck, 2012; Myers, 1990).  A variance inflation factor measures how much of 

the variance in the regression coefficients is due to multicollinearity, or strong 

correlations between some of the independent variables. Comparably, “tolerance refers to 

the percent of variance associated with a particular predictor that cannot be accounted for 

by the other predictors.  Tolerance values above 0.10 are generally considered adequate” 

but tolerance values above 0.20 are preferred (Leaper et al., 2012, p. 275-276).  Similarly, 

VIF statistics that are below five are considered acceptable in regression models, and VIF 

scores greater than ten require further investigation or modifications (Kutner et al., 2003; 

Myers, 1990).   In addition, it is usually desirable to have the average VIF score of all of 

the independent variables relatively close to one. 

In the initial, simultaneous multiple regression model, using all of the independent 

variables (see the next section for exact details), tolerance statistics were all above 0.23 

and VIF scores were all below 4.5, creating an average VIF score of 2.03, which were 

considered acceptable.  However, only mathematical anxiety and attitudes towards 

mathematics (as measured by the MAS and ATMI, respectively) were even close to 

reaching these limits.  All other tolerance statistics were above 0.6 and all other VIFs 

were below 1.6 creating an average VIF of 1.25, which would be considered very good.  

This was not surprising, since these two variables were found to be so strongly correlated 

with each other (r = -0.879; p = 0.000).  By combining these measures, I was able to 

reduce the effects of multicollinearity on the overall regression model.  Specifically, once 

these were measured as a single variable, labeled “Math_Emotions” in SPSS, all 

tolerance statistics were above 0.65 and all VIF scores were below 1.535, creating an 
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average VIF score of only 1.21, which are all considered very good.  Therefore, 

combining these affective variables allowed me to develop a more robust model.  In the 

description of the multiple regression analyses below, I therefore describe regression 

models using both attitudes towards mathematics and mathematical anxiety as separate 

predictors as well models using a combination of these measures, which I indicate as the 

mathematical emotions predictor (calculated as MAS score subtracted from ATMI score). 

There were also correlations, as predicted, between each of the independent 

variables and the dependent variable:  final course average (note that this is one of the 

required assumptions of linear regression, and is therefore described in more detail in the 

following section).  Final averages in BUS 111 were positively correlated with students’ 

high school GPAs (r = 0.507; p = 0.000), attitudes towards mathematics (r = 0.489; p = 

0.000), the university’s placement scores (r = 0.386; p = 0.000), and SAT scores (r = 

0.227; p = 0.000).  This indicates that students with higher SAT scores, GPAs, and 

placement scores tended to earn higher grades in BUS 111.  Additionally, students with 

more favorable attitudes towards mathematics tended to earn higher final grades. In terms 

of the four facets of student attitudes towards mathematics, as measured by the ATMI, 

those with highest levels of confidence tended to earn higher BUS 111 final grades (r = 

0.436; p = 0.000).  Final averages in BUS 111 were negatively correlated with students’ 

anxiety levels in mathematics (r = -0.452; p = 0.000), and number of classes missed over 

the course of the semester (r = -0.451; p = 0.000).  This indicates that students with 

higher levels of mathematical anxiety and students who missed a greater number of 

classes tended to earn lower grades in BUS 111.  These correlations with the dependent 

variable led me to believe that the regression model would likely be statistically 

significant, as it further confirmed the assumption of linear relationships between the 

independent variables and the dependent variable.   

Group Differences:  Repeaters and Instructors 
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Eighteen of the 224 initial participants (7.3%) were taking BUS 111 for the 

second time.  The reason they were retaking the course was not specifically provided, but 

most students only re-take the course after earning a C- or lower the first time (termed an 

“unsuccessful completion”), as students must receive a C or better in this course in order 

to continue in a College of Business degree program.  Because these students may have 

had different experiences and thus may have had different responses on the surveys, t-

tests were run in SPSS to determine whether significant differences existed in this group 

on each of the variables.  The t-tests revealed only one significant difference in all of the 

pre-survey variables between students who were taking BUS 111 for the first time and 

those who had taken BUS 111 before.  Specifically, students who were repeating BUS 

111 had significantly lower high school GPAs (mean = 2.83 on a 4.6 scale) than those 

students taking BUS 111 for the first time (mean = 3.35 on a 4.6 scale; p = 0.000).  There 

were no other initial significant differences between these two groups. 

On the post-surveys, results were again similar for students who were retaking 

BUS 111.  The post-survey t-test results revealed only two new statistically significant 

differences between students who were taking BUS 111 for the first time and those who 

had taken the course before.  Specifically, students who were repeating BUS 111 had 

significantly lower attitudes towards mathematics on the post-surveys than students who 

were taking BUS 111 for the first time, though there was no significant difference on the 

initial survey.  Repeating students reported an average post-ATMI score of 126.5 whereas 

first time students reported an average post-ATMI score of 142.96 (p = 0.000).  In 

addition, repeating students reported an average post-MAS score of 43.69 versus first 

time students’ average post-MAS score of 36.95, indicating students who were retaking 

BUS 111 had significantly higher levels of mathematical anxiety after taking the course 

again (p = 0.000).  Other than these variables, there were no significant differences 

between these groups and, specifically, those who were repeating the course did not earn 

significantly different final grades in BUS 111.  
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Three different instructors were assigned to teach BUS 111 when this research 

was performed:  I will refer to them as Instructor 1, Instructor 2, and Instructor 3.  To 

examine the potential differences in student responses amongst the different instructors, 

ANOVA analyses were performed in SPSS (Weiss, 2008).  On the pre-surveys, only the 

students’ perception of their instructor’s effectiveness was significantly different among 

the different instructors at the α = 0.01 significance level.  However, using the Tukey 

HSD post-hoc test to examine these differences in SPSS, only Instructor 1 was 

significantly different in terms of how students perceived her effectiveness.  Recall from 

the previous section that Instructor 1 was perceived to be the most effective.  The other 

two instructors were not significantly different from each other on this variable.   

On the post-surveys, the instructors were also significantly different on:  the 

amount of time their students reported working on mathematics outside of class each 

week, students’ perceived instructor effectiveness, and students’ ATMI and MAS scores.  

Specifically, students reported spending significantly more time in Instructor 2’s class (by 

approximately 1.89 hours per week) than in the other two instructors’ courses (p = 

0.000).  Only Instructor 2 was significantly different on this variable.  Similarly, and 

mirroring the pre-surveys, only Instructor 1 was significantly different from the others in 

terms of how students perceived her effectiveness, with her again being seen as 

significantly more effective than the other two instructors (p = 0.000).  Only Instructor 1 

and Instructor 2 were significantly different from one another in terms of their students’ 

ATMI (p = 0.001) and MAS scores (p = 0.000).  Students displayed more favorable 

attitudes towards mathematics and lower levels of anxiety in Instructor 1’s course (ATMI 

mean = 146.51; MAS mean = 35.17) than in Instructor 2’s course (ATMI mean = 134.37; 

MAS mean = 40.89).  Multiple comparisons in SPSS revealed that Instructor 3 was not 

significantly different from the other instructors on these variables. 

Significant differences were also found to exist between the BUS 111 instructors 

and the students’ final grades.  Instructors submitted their final averages as well as their 
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students’ scores on the three course exams.  The instructors used very similar exams and 

each exam covered the same topics.  Averages for each of these assessments (only for 

students who chose to participate in this research) are shown in the table below (Table 7): 

Instructor Number of 
Students 

Exam 1 
Average 

Exam 2 
Average 

Exam 3 
Average 

Course 
Average 

1 122 77.31 75.34 70.31 77.01 
2 93 82.18 66.67 64.84 72.75 
3 29 70.03 65.24 52.88 65.98 

Overall 244 78.30 70.83 66.15 74.07 
 

Table 7.  Breakdown of Individual Exam Grades and Final Averages    

 While the table shows some disparities in grades overall, not all of these 

disparities in grades were different on a statistically significant level.  On exam one, 

Tukey HSD post-hoc tests revealed that only Instructor 2 and Instructor 3 were 

significantly different from one another (p = 0.001); on exam two, only Instructor 1 was 

significantly different from the other two instructors (p = 0.034 for Instructor 2; p = 0.006 

for Instructor 3); and on exam three, only Instructor 1 and Instructor 3 were significantly 

different from each other (p = 0.003).  Similarly, in terms of final course grades, only 

Instructor 1 and Instructor 3 had final averages that were significantly different from one 

other (p = 0.008).  With these differences in mind, separate multiple regression analyses 

for each instructor will be considered later in this chapter. 

t-Test Results 

Gender Differences in BUS 111 Success 

Male and female students were different from each other at a statistically 

significant level on a few variables from the pre-surveys and the data gathered from 

admissions.  Females earned statistically significantly higher GPAs in high school (by 

about 0.303 points) than their male counterparts (p = 0.000).  Females also expected to 

miss, on average, 0.41 fewer BUS 111 classes over the course of the semester than males 

(p = 0.006), as determined by the pre-survey.  On the post-surveys, there were no 
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significant differences between the results of females and the results of males in BUS 

111.  This suggests that, though females anticipated they would miss fewer classes than 

their male peers at the beginning of the semester, in the end, they missed approximately 

the same number of classes (on average). 

Significant differences also existed between males and females in their final BUS 

111 grades.  Females scored higher on the third exam of the semester (mean = 73.85) 

than their male counterparts (mean = 61.73) at a statistically significant level (p = 0.000).  

Additionally, females earned higher overall averages in BUS 111 by about 8.22 

percentage points than males (p = 0.000).  Because of these differences, multiple 

regression statistics were run on the BUS 111 group as a whole and then multiple 

regression statistics were also run on males and females separately to see if different 

independent variables were significant for each gender (similar to Smith & Schumacher, 

2005).  With such significant differences in the dependent variable, it was necessary to 

examine the two genders separately to determine whether higher R2 values could be 

achieved.  The results of each of these analyses are explained in the section on multiple 

regression found later in this chapter. 

Change in Attitude Towards Mathematics 

Research Question Addressed:  How do student attitudes towards mathematics 

change after taking BUS 111 at URI?  

As described above, BUS 111 students’ overall ATMI scores were, on average, 

lower on the post-surveys than they were on the pre-surveys, indicating that students had 

more favorable attitudes towards mathematics before taking the course than they did upon 

completion of the course.  However, this change needed to be tested for statistical 

significance.  A paired samples t-test was run on the ATMI variable in SPSS to determine 

whether students’ attitudes towards mathematics significantly changed after taking BUS 

111.  The paired sample t-test revealed that students’ attitudes towards mathematics did 

not significantly change (p = 0.303).  This suggests that the BUS 111 course did not 
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statistically affect students’ overall attitudes towards mathematics.  This may indicate that, 

without specific course goals in place to change student attitude, student attitudes tend to 

remain stable. 

As explained in more detail in chapter three, the ATMI consists of four subscales 

to measure various facets of student attitude towards mathematics:  self-confidence, 

value/relevance, enjoyment, and motivation (Tapia, 1996).  Paired samples t-tests were 

run with student participants on each of these four subscales to determine whether 

significant differences existed on any single facet of student attitude.  Though their 

overall attitudes may not have changed significantly, it was possible that significant 

changes existed on one or more of the individual subscales.  On average, students’ 

confidence on the pre-survey was 52.97 out of 75 (70.63% confident) and on the post-

survey was a 51.73 out of 75 (68.97% confident).  Similarly, students’ value of 

mathematics on the pre-survey was a 39.69 out of 50 (79.38%) and on the post-survey 

was a 39.62 out of 50 (79.24%).  Students’ average enjoyment of mathematics on the pre-

survey was a 33.91 out of 50 (67.82%) and on the post-survey was a 33.63 out of 50 

(67.26%).  Finally, students’ motivation levels were, on average, a 16.43 out of 25 

(65.72%) on the pre-surveys and a 16.10 out of 25 (64.40%) on the post-surveys.  Thus, 

each individual subscale of attitude measurement decreased after taking BUS 111.  See 

the graph below (Figure 23) for a visual representation of these values. 
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Figure 23.  ATMI Pre- and Post-Survey Subscale Changes 

 

Therefore, I could conclude that on average, student participants had lower 

overall levels of confidence in mathematics, saw mathematics as a less valuable and less 

enjoyable subject, and had lower motivation levels in mathematics after completing BUS 

111 than they did before the course began.  However, a paired samples t-test run in SPSS 

revealed that the only statistically significant change (at the α = 0.05 significance level) 

in these four attitude subscales was student confidence (see Table 8 below for a more 

detailed breakdown of each of these changes).  Student confidence levels in mathematics 

were significantly lower at the end of the semester than they were at the beginning of the 

semester (p = 0.040).   Additionally, ANOVA tests in SPSS revealed that statistically 

significant differences existed between students’ post-survey confidence levels in 

Instructor 1’s class versus the confidence levels in the other two instructors’ classes.  

Specifically, Instructor 1’s students felt significantly more confident (p = 0.001) than 

students in Instructor 2 and Instructor 3’s classes, with arithmetic means of 54.29 

(72.39%) in Instructor 1’s class and means of only 48.12 (64.16%) and 51.67 (68.89%) in 

Instructor 2’s class and Instructor 3’s class, respectively.  Interestingly, no such 

differences existed in these students’ confidence levels at the beginning of the semester in 

BUS 111. 

ATMI 
Subscale 

Pre-Survey 
Average 

Post-Survey 
Average Change p-value 

Confidence 70.63% 68.97% -1.66% 0.040 

Value 79.38% 79.24% -0.14% 0.821 

Enjoyment 67.82% 67.26% -0.56% 0.432 

Motivation 65.72% 64.40% -1.32% 0.207 
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ATMI Total 71.51% 70.90% -0.61% 0.303 
 
Table 8.  Pre- and Post-Survey Results of ATMI Subscales 
Change in Mathematical Anxiety 

Research Question Addressed:  How does student mathematical anxiety change 

after taking BUS 111 at URI? 

As described above, students’ MAS scores were, on average, slightly higher on the 

pre-surveys than they were on the post-surveys, indicating that they were more anxious 

about mathematics before the course began.  This is not entirely surprising, as most of 

these students were freshmen who were unfamiliar with college mathematics courses.  A 

paired samples t-test was run on this variable to determine whether students’ mathematical 

anxiety levels significantly changed after taking BUS 111.  The t-test revealed that 

students’ mathematical anxiety did not significantly change (p = 0.912).  This suggests 

that BUS 111 did not significantly impact how anxious students felt about mathematics.  

This may indicate that student anxiety levels are difficult to change, or that no actions 

were taken in an attempt to lessen student anxiety in the course.  This is explored in more 

detail in chapter six (discussion and implications). 

Change in Perceived Instructor Effectiveness 

On average, students tended to rate their perception of their instructor’s 

effectiveness higher at the beginning of the semester than they did at the end of the 

semester.  A paired t-test was also run on this variable to determine whether students’ 

perceptions of their instructor’s effectiveness significantly changed after completing the 

course.  The test revealed that how students perceived their instructor’s effectiveness did 

not significantly change from the first week of the semester to the last week of the 

semester (p = 0.207), indicating that students generally stuck with their initial perceptions 

of their instructors.  This suggests that students may make decisions about their 

instructor’s effectiveness early on in the semester.  First impressions may stick with 

students throughout the 15-week course. 
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Multiple Regression Results 

Overarching Research Question Addressed:  What factors best predict success in 

a foundational business mathematics course (BUS 111 at URI)?  

Multiple Regression Assumptions Satisfied 

As with all statistical tests, certain assumptions had to be satisfied in order to run 

multiple regression analyses and avoid errors or misleading results (Huck, 2012; Osborne 

& Waters, 2002).  First, multiple regression assumes that a linear relationship exists 

between each of the independent variables and dependent variable.  Typically, if a linear 

relationship is not present, then the resulting regression equations will actually under-

estimate the relationship between the variables (Osborne & Waters, 2002).  This 

assumption was tested using a scatterplot matrix and a correlation matrix. In the 

scatterplot matrix, I was looking for fairly linear relationships between the predictors and 

BUS 111 final course average.  As shown on the following page (Figure 24), these 

relationships appear fairly linear, but more inspection was required, as is often the case, 

because not all of the independent variables were continuous.   
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Thus, in the correlation matrix, I was checking to make sure that significant 

correlations existed between the dependent variable and each independent variable, 

which was satisfied (all p ≤ 0.001).  These specific correlations were discussed in more 

detail in the previous section, and can be seen in the last row or last column of the 

correlation matrix (Table 9).  Additionally, I recognized that some of the p-values 
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Figure 24.  Scatterplot Matrix  
 

between the independent variables were 0.000, which could indicate multicollinearity.  

However, they can be correlated to some degree, as the regression analysis accounts for 

this.  Typically, as mentioned above, correlation coefficients of |r| > 0.7 warrant concern.  

So, again, only the relationship between attitudes towards mathematics and mathematical 
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Table 9.  Correlation Matrix  
 

anxiety posed a potential concern. This correlation matrix is shown in full on the 

following page, labeled Table 9. 

 

 

 

 

 

 

 

 

 

 

This assumption is closely tied to the assumption of independent residuals and 

independent observations, also required for multiple regression analyses (Huck, 2012; 

Osborne & Waters, 2002).  The independent observations assumption is generally met by 

design, as it was here, because this was not a longitudinal study and thus each participant 

was independent.  Though pre- and post-surveys were analyzed in a different part of this 

research, only one of these two results was used for the multiple regression analysis.  To 

further confirm independent residuals and a linear relationship, I examined the residual 

scatterplot in SPSS, which shows standardized predicted y-values on the x-axis and 

standardized residuals on the y-axis.  Since there seemed to be no obvious pattern in this 

graph, with the results roughly centered around zero (see Figure 25), I was able to move 

forward with the multiple regression (M. Shim, personal communication, January 2015).  
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Figure 25.  Scatterplot of Residuals  
 

 

 

 

 

 

 

 

 

 

 

Additionally, this scatterplot shows that as the predicted values increase, the 

variance of the residuals stays relatively constant, which confirms another assumption of 

multiple regression, known as homoscedasticity (Huck, 2012).  Homoscedasticity refers 

to the errors in each of the independent variables having relatively equal variance.  

Finally, an assumption of multiple regression analysis is that the residual values will be 

normally distributed.  To verify this assumption, I analyzed a histogram of the residuals 

and found it to be relatively normal (see Figure 26 below).  Further, the normal P-P plot 

(also shown below, Figure 27) was fairly linear.  The kurtosis for each of the variables 

was also examined to investigate normality.  Each kurtosis level was between -2 and 2, 

which is generally considered acceptable for normality (George & Mallery, 2010).  
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Figure 26.  Histogram of Residuals in Dependent Variable 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 27.  Normal P-P Plot of Regression Standardized Residual 

Enter-All/Simultaneous Results 

Initially, all independent variables (gender, mathematics SAT score, high school 

GPA, placement score, number of absences, hours spent outside of class on mathematics 

per week, student attitudes towards mathematics as measured by their ATMI score, and 

student levels of mathematical anxiety as measured by their MAS score) were entered 

into SPSS to determine which, if any, were significant predictors of BUS 111 course 

average and to examine whether the model as a whole was significant in making 
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predictions.  The null hypothesis and alternative hypothesis for this analysis were as 

follows: 

H0:   The regression model is not significant for making predictions about overall 

BUS 111 average; none of the variance in BUS 111 average can be 

explained by the combination of these variables because all coefficients 

are zero. 

HA:  The regression model is significant for making predictions about overall 

BUS 111 grade; some of the variance in BUS 111 average can be 

explained by the combination of these variables because at least one 

coefficient does not equal zero. 

This overarching null hypothesis was tested using an ANOVA analysis, the results of 

which are shown in Table 10 below (Huck, 2012; Osborne & Waters, 2002; Weiss, 

2008).  As shown in this table, the F-statistic from the ANOVA was F(8,135) = 14.023 

with p = 0.000, so the null hypothesis was rejected and I was able conclude that the 

model, using all of the independent variables, was significant in making predictions about 

the dependent variable, BUS 111 final course average. 

 

  

 

 

 
 

 

Knowing that the model was significant, I then examined the regression 

coefficient (R) as well as the coefficient of determination (R2) value for this enter-all 

analysis.  As shown in Table 11 below, using each of the independent variables produced 

an R2 = 0.454, indicating that 45.4% of the variance in BUS 111 course grade could be 

explained by this regression model (Huck, 2012; Weiss 2008).  Being able to explain this 

Table 10.  SPSS ANOVA Table for Enter-All MR Results 
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amount of variability in the dependent variable is not only statistically significant, but 

also has great practical significance to advisors and BUS 111 instructors and students. 

 

 

 
 

 

Additionally, the standard error of the estimate was about 10.2, indicating that the 

observed BUS 111 averages differed from the values predicted using this model by about 

10.2 points.  The next piece of output to be analyzed in SPSS was the model itself, that is, 

the specific regression equation that uses all eight of these independent variables to make 

predictions about students’ final course average in BUS 111.  Those results are printed in 

Table 12 below: 

 

 

 

 

 
 

  

 

From this output, I was able to build and analyze the regression equation if all of 

the independent variables were used.  I will define these variables (and continue to use 

these same variables for the remainder of this chapter) as follows: 

 Let 𝑦 = predicted final average in BUS 111 

  𝑥! = mathematical anxiety (initial MAS score) 

  𝑥! = attitudes towards mathematics (initial ATMI score) 

Table 11.  SPSS Model Summary for Enter-All MR Results 

Table 12.  SPSS Coefficients Table for Enter-All MR Results 
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  𝑥! = gender (dummy coded with “0” = male and “1” = female) 

  𝑥! = mathematics SAT score 

  𝑥! = high school GPA 

  𝑥! = mathematics placement score 

  𝑥! = number of hours spent on mathematics outside of class per week 

  𝑥! = number of absences over the course of the semester 

Then the regression equation is given as: 

 

𝑦 = 27.415 − 0.22𝑥! − 0.018𝑥! + 2.082𝑥! + 0.038𝑥! + 11.794𝑥! + 1.427𝑥! − 0.647𝑥! − 2.227𝑥! 

 

With this equation in mind, I first draw attention to the fact that the 𝑦 – intercept 

is 27.415.  Mathematically, this would typically indicate that if all of the independent 

variables were equal to zero, we could still expect a student to receive a final course 

grade in BUS 111 of a 27.415%.  In this particular model (and in many regression models 

in social science fields), however, I want to note that this result is not possible, for the 

minimum SAT score is 200, the minimum ATMI score is 40, the minimum MAS score is 

14, and the minimum placement score is 1.  Thus, earning a zero on these measures is not 

possible.  Further, someone with a GPA of zero would not be admitted to the university, 

as they likely would not have graduated from high school. 

 The standardized coefficients (Beta) in a multiple regression model represent 

which of the predictors are the most important in the model (Weiss, 2008).  Specifically, 

these represent the anticipated change in BUS 111 average using standardized scores 

corresponding to a change of one standard deviation in that predictor variable, while 

holding everything else constant (Huck, 2012). Looking at the absolute value of these 

coefficients, we see that the order of significance in this model, starting with the most 

significant, is:  (1) high school GPA, (2) number of absences, and (3) placement score, 
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which are all statistically significant predictors on their own, while holding everything 

else constant, followed by (4) mathematical anxiety, (5) SAT score, (6) time devoted to 

mathematics outside of class, (7) gender, and (8) attitude towards mathematics. Since the 

p-values for mathematical anxiety, attitudes towards mathematics, gender, SAT scores, 

and time spent on mathematics outside of class are all above 0.05, these variables may 

not be explaining a significant amount of the variability in course grade on their own, 

though the model as a whole including them is significant. These standardized 

coefficients tell us only the order of importance of the variables, as they can be compared 

to each other directly in standardized form. 

 The unstandardized coefficients (B) in a multiple regression model explain how 

much of a change we would expect to see in BUS 111 course average given one unit 

change of each independent variable, while holding every other variable constant (Huck, 

2012).  Thus, these coefficients cannot be directly compared to each other (a one point 

increase in SAT score, measured out of 800, is very different from a one point increase in 

GPA, measured out of 4.6, for example).  Therefore, using this simultaneous model, we 

can interpret each of the individual unstandardized coefficients using their specific scales.  

We would expect a lower grade of 0.22 points in BUS 111 for each additional point 

scored on the MAS and a 0.018 point decrease in final grade for each additional point on 

the ATMI.  Gender was dummy coded with male = “0” and female = “1”, thus, it is 

interpreted slightly differently (Huck, 2012).  Since the unstandardized coefficient for 

gender is positive, being a female tends to have a positive effect on BUS 111 course 

average while holding everything else constant.  Specifically, females can expect to earn 

about 2.082 points higher than their male counterparts in this model. 

Similarly, we would expect students to earn an additional 0.038 points in the 

course for each additional point earned on the mathematics portion of the SAT.  Since the 

SAT is scaled in tens, it might be easier to think of this as a 0.38 point increase in course 

grade for each 10 point increase on the SAT or a 3.8 point increase in course grade for 
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each 100 point increase on the SAT.  So, someone with a 600 on the mathematics portion 

of the SAT could expect to earn about 3.8 percentage points higher in BUS 111 than 

someone with a 500 SAT score, according to this model.  We would also expect to see a 

higher grade of 11.794 points for each point on their high school GPA and 1.427 points 

higher for each point on the placement exam.  This placement coefficient is not a very 

large increase, considering there are only seven levels of the placement exam.  This 

means that, according to this model, someone who earned a one (group A) on the 

placement exam would only expect to earn about 8.562 points less in BUS 111 than 

someone who earned a seven (group D) on the placement exam.  We would also expect 

to see a 0.647 point drop in course average for each extra hour spent on the course.  This 

is interesting and may indicate that students who struggle with the material feel obligated 

to spend more time working on it outside of class.  Finally, we could expect a drop of 

2.227 points in course average for each class missed over the semester.  Thus, a drop of a 

letter grade (or about ten points) could be expected to occur after four or five absences. 

Using this regression equation would indicate that a male student enrolled in BUS 

111 who:  scored a 35 on the MAS and a 140 on the ATMI, earned a 580 on the 

mathematics portion of the SAT and a 3.7 GPA in high school, earned a three (group B) 

on the placement exam, spent about 3 hours per week working on mathematics outside of 

class, and missed 2 classes during the semester, would earn a predicted grade in BUS 111 

of about a: 

𝑦 = 27.415− 0.22(35)− 0.018(140)+ 2.082(0)+ 0.038(580)+ 11.794(3.7)

+ 1.427(3)− 0.647(3)− 2.227(2) 

=  80.758      (± 10.2)            (Thus, a letter grade of B-) 

Reducing Multicollinearity 

 The only problem with the enter-all model described above is the potential bias 

due to multicollinearity because mathematical anxiety and attitudes towards mathematics 

were so strongly correlated.  Though all VIF scores were below 4.5, which is considered 
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acceptable, producing a stronger model with lower VIF statistics was desirable (Kutner et 

al., 2003; Myers, 1990).  Therefore, mathematical anxiety and attitudes towards 

mathematics were combined as a single predictor “mathematical emotions”.  The same 

overarching hypothesis was tested using an ANOVA analysis, the results of which are 

shown below (Huck, 2012; Osborne & Waters, 2002; Weiss, 2008).  As shown in Table 

13, the F-statistic from the new ANOVA is F(7,144) = 17.724 with a p-value of p = 

0.000, so the null hypothesis was easily rejected.  I was able conclude that the new 

simultaneous model, using all of the independent variables, but combining attitudes and 

anxiety as one predictor, was also significant in making predictions about the dependent 

variable:  BUS 111 final course average. 

 

  

 

 

 
 

 

I then examined the R2 value for this new, modified enter-all analysis.  As shown 

in Table 14 below, using these seven independent variables produced an R2 = 0.463, 

indicating that 46.3% of the variance in BUS 111 course grade could be explained by this 

regression model (Huck, 2012; Weiss 2008).   This is a greater amount of the variability 

than was explainable with the equation separating anxiety and attitudes, and, because of 

the removal of the concerns about multicollinearity, is a better model than the first one 

presented. 

 

 

 

 

Table 13.  SPSS ANOVA Table for Enter-All MR Results with Math Emotions 

Table 14.  SPSS Model Summary for Enter-All MR Results with Math Emotions 
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In this case, the standard error of the estimate is about 10.8, indicating that the 

observed BUS 111 averages could be expected to differ from the values predicted using 

this model by about 10.8 points, or one letter grade.  The specific regression equation that 

uses all seven of these independent variables to make predictions about students’ final 

course average in BUS 111 was then examined.  Those results are printed in Table 15: 

 

 

 

 

 
 

  

 

From this output, I was able to build and analyze this new regression equation if 

all of the independent variables were used with attitudes and anxiety combined as 

mathematical emotions.  I will define these new variables as follows (note that x1 and x2 

have been combined to produce x1,2, and all other variables remain the same): 

 Let 𝑦 = predicted final average in BUS 111 

  𝑥!,! = mathematical emotions (attitudes and anxiety) 

  𝑥! = gender (dummy coded with “0” = male and “1” = female) 

  𝑥! = mathematics SAT score 

  𝑥! = high school GPA 

  𝑥! = mathematics placement score 

  𝑥! = number of hours spent on mathematics outside of class per week 

  𝑥! = number of absences over the course of the semester 

Table 15.  SPSS Coefficients Table for Enter-All MR Results with Math Emotions 
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Then the new regression equation is given as: 

 

𝑦 = 10.913 + 0.088𝑥!,! + 2.95𝑥! + 0.028𝑥! + 12.345𝑥! + 1.227𝑥! − 0.44𝑥! − 3.078𝑥! 

 

 The standardized coefficients (Beta) in this model show that the order of 

significance in this equation, starting with the most significant variable, is:  (1) high 

school GPA, (2) number of absences, and (3) mathematical emotions, which are all 

statistically significant predictors on their own, while holding everything else constant, 

followed by (4) placement score, (5) gender, (6) SAT score, and finally (7) time devoted 

to mathematics outside of class.  Unlike the original enter-all model, here, the p-value for 

mathematical emotions had p < 0.05, and thus was significant.  However, university 

placement score, gender, mathematics SAT scores, and time spent on mathematics 

outside of class were all above 0.05.  Therefore these variables, though the model as a 

whole including them was considered significant, may not be explaining a significant 

amount of the variability in course grade.  This will be addressed in the following section. 

 The unstandardized coefficients (B) in this model tell us that we would expect a 

0.088 point increase in final grade for each additional point in students’ mathematical 

emotions. We would also expect to see a higher grade of 12.345 points for each point on 

their high school GPA and 1.227 points higher for each point earned on the placement 

exam. Since the unstandardized coefficient for gender is positive, being a female still 

tends to have a positive effect on BUS 111 course average while holding everything else 

constant.  Specifically, females can expect to earn about 2.95 points higher than their 

male counterparts in this model.  Similarly, we would expect students to earn an 

additional 0.028 points in the course for each additional point earned on the mathematics 

portion of the SAT, or a 2.8 point increase in course grade for each 100 point increase on 

the SAT. We would also expect to see a 0.44 point drop in course average for each extra 

hour spent on the course and a drop of 3.078 points in course average for each class 
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missed over the semester.  Thus, a letter grade decrease could be expected to occur after 

about three absences. 

Step-Wise Results 

 Once these initial results were determined, variables were entered into the model 

in a step-wise action to investigate whether the affective, cognitive variables were more 

or less significant in student success than the non-affective test scores.  Especially since 

some of the variables in the enter-all models were shown to not be significant, it was 

important to consider a step-wise model, which adds variables into the model one at a 

time and includes only the most significant variables.  For this reason especially, step-

wise multiple regression is the most widely used among researchers in social science 

fields (M. Shim, personal communication, March 2013).  Step-wise multiple regression 

produces the most parsimonious result, as it determines a significant regression equation 

using the fewest number of predictors.  After each new variable is entered, an ANOVA 

analysis is run to determine whether adding in the new variable helped explain a 

statistically significant amount of variability in BUS 111 average (Huck, 2012).  If the 

new variable entered into the model is unable to explain significantly more of the 

dependent variable’s variance (in other words, if the change in R2 is not statistically 

significant), then it will be removed from the model to produce a more efficient result 

with fewer variables.  The order in which the predictors are entered is based on 

correlations with the dependent variable, and variables are added and deleted at each step 

to determine the best model.  Relying on fewer predictors often makes the equation more 

practical to use, as only a few data points need to be obtained from students and entered 

into the model in order to predict their BUS 111 final average.  Thus, the results of the 

step-wise multiple regression are analyzed in this section.   

Similar to the simultaneous method, the null hypothesis and alternative hypothesis 

for this analysis were as follows: 
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H0:   The regression model is not significant for making predictions about overall 

BUS 111 average; none of the variance in BUS 111 average can be 

explained by the variables selected in a step-wise fashion because all of 

the coefficients are zero. 

HA:  The regression model is significant for making predictions about overall 

BUS 111 grade; some of the variance in BUS 111 average can be 

explained by the variables selected in a step-wise fashion because at least 

one of the coefficients is not equal to zero. 

This regression model hypothesis was tested using ANOVA analysis as well and the 

results are shown below.  As shown in Table 16 below, the F-statistic in the final step 

(Model 3) was F(3,140) = 33.084 with p = 0.000, so the null hypothesis was rejected and 

I was able to conclude that the new model, using the three independent variables selected 

in the step-wise analysis (high school GPA, placement score, and number of classes 

missed), was significant for making predictions about BUS 111 average. 

 

  

 

 

 

 

 

 

 

 
 

Knowing that the model was significant, I examined the regression coefficient as 

well as the R2 value for this step-wise analysis.  As shown in Table 17 below, using only 

the independent variables high school GPA, placement score, and number of absences 

Table 16.  SPSS ANOVA table for Step-Wise MR Results 
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produced an R2 = 0.415, indicating that 41.5% of the variance in BUS 111 course grade 

could be explained by this regression model (Huck, 2012; Weiss 2008).  This is still a 

great amount of variability that can be explained, and with this model, only three 

predictors would need to be known in order to predict course grade in BUS 111.  It is 

important to note that with only GPA, only 25.2% of the variability was accounted for, 

and only 36.9% was explained with the addition of placement score.  So, an additional 

5.4% of the variance here was explained by the third variable entered into the step-wise 

model: how many class a student missed over the semester.  Thus, time devoted to the 

BUS 111 course was still statistically significant in explaining overall course average. 

 
 

 

 

 

 

 

Additionally, the standard error of the estimate was about 10.36, indicating that 

the observed BUS 111 averages differed from the values that would be predicted using 

this model by about 10.36 points, or about one letter grade.  The next piece of output to 

be analyzed in SPSS was the actual model or the regression equation that used these three 

independent variables to make predictions about students’ final course average in BUS 

111.  Those results are printed below, in Table 18: 

 

 

 

 

 

 
 

Table 17.  SPSS Model Summary for Step-Wise MR Results 

Table 18.  SPSS Coefficients Table for Step-Wise MR Results 
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 From this output, I was able to build and analyze the regression equation if only 

these three independent variables were used.  I will define these variables as they were 

defined in the previous section.  Then the multiple regression equation for the step-wise 

model is given as: 

𝑦 = 31.056 + 12.490𝑥! + 2.435𝑥! − 2.190𝑥! 

 

With this model, we see that all of the variables chosen are statistically significant at the 

α = 0.001 level, and the multicollinearity restrictions are easily satisfied for each, with all 

tolerance statistics above 0.91 and all VIF scores below 1.09 with an average VIF of only 

1.076, which are considered very good (Kutner et al., 2003; Myers, 1990).  Thus, this is 

likely a better model to use than the enter-all models, as it is more efficient and has 

higher statistical significance, though it is only able to explain 41.5% of the variance in 

BUS 111 grade, rather than 45.4%.  I examined step-wise regression results combining 

mathematical anxiety and attitudes towards mathematics as well, to compare these 

models with fewer collinearity concerns.  Those results are explained later in this section. 

First, in Table 18, above, the unstandardized coefficients (B) in this regression 

model indicate that we would expect students to earn an additional 12.49 percentage 

points in the course for each additional point on their high school GPA and 2.435 more 

points for each point earned on the placement exam.  This means that a student who 

earned a 3.8 GPA in high school would expect to earn about 12.5 more points in BUS 

111 than someone with a high school GPA of 2.8, or that a student who earned a 3.8 GPA 

in high school would expect to earn about 1.25 more points in BUS 111 than someone 

with a high school GPA of 3.7.  Finally, we could expect a drop of 2.19 points in course 

average for each class a student missed over the semester. 

Using this step-wise regression equation would indicate that a student enrolled in 

BUS 111 who earned a 3.2 GPA in high school and a 4 (group B/C) on the placement 

exam and missed two classes during the semester, would earn a predicted grade in BUS 

111 of about a: 
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𝑦 = 31.056+ 12.490(3.2)+ 2.435(4)− 2.190(2) 

    =  76.384      (± 10.36)                   (Thus, a letter grade of C)  

Reducing Multicollinearity 

 Because mathematical anxiety and attitudes towards mathematics were so 

strongly correlated, I also wanted to run a step-wise regression using the combination of 

these predictors (“mathematical emotions”) in an attempt to reduce the effects of 

multicollinearity and thus potentially change the final model. The same overarching 

hypothesis was tested using an ANOVA analysis, the results of which are shown below 

(Huck, 2012; Osborne & Waters, 2002; Weiss, 2008).  As shown, the F-statistic from the 

new ANOVA was 29.164 with p = 0.000, so the null hypothesis was rejected and I was 

able conclude that the model, now using four independent variables selected in the step-

wise analysis (high school GPA, number of classes missed, placement score, and now 

mathematical emotions), was significant for making predictions about BUS 111 average. 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

I then examined the regression coefficient as well as the coefficient of 

determination (R2) values for this new, modified step-wise analysis.  As shown in Table 

20 below, using only the independent variables high school GPA, placement score, 

number of absences, and mathematical emotions, I was able to produce an R2 = 0.442, 

Table 19.  SPSS ANOVA Table for Step-Wise MR Results with Math Emotions 
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indicating that 44.2% of the variance in BUS 111 course grade could be explained by this 

regression model (Huck, 2012; Weiss 2008). This is a greater amount of the variability 

than was explainable with the previous step-wise equation separating anxiety and 

attitudes, and, because of the removal of the concerns about multicollinearity, is an even 

better model than the first. Here, with GPA alone, only 24.5% of the variability was 

accounted for, and only 35.8% was explained with the addition of how many classes a 

student missed over the semester.  An additional 8.4% of the variance here was explained 

by placement score and the students’ mathematical emotions, so time devoted to the 

course and how students perceive mathematics are statistically significant in explaining 

overall BUS 111 course average.   

 

 

 

 

 

 

 

In this case, the standard error of the estimate was about 10.9.  The specific 

regression equation that uses these four independent variables to make predictions about 

students’ final course average in BUS 111 was then examined.  Those results are printed 

in Table 21, below: 

 

 

 

 

 

 

Table 20.  SPSS Model Summary for Step-Wise MR Results with Math Emotions 
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From this output, I was able to build and analyze the regression equation if only 

these four independent variables were used, with attitudes and anxiety combined as 

emotions.  I defined these variables as described in the previous section.  The multiple 

regression equation for the step-wise model is given as: 

𝑦 = 22.503+ 0.078𝑥!,! + 13.385𝑥! + 1.784𝑥! − 2.992𝑥! 

 

With this model, we see that all of the variables chosen are statistically significant at the 

α = 0.05 level, and the multicollinearity restrictions are easily satisfied for each, with all 

tolerance statistics above 0.8 and all VIF scores below 1.25 with an average VIF of only 

about 1.13, which are considered very good (Kutner et al., 2003; Myers, 1990).  Thus, 

this is likely a better model to use than not only the first step-wise model, but also both 

enter-all models, as it is more efficient, has higher statistical significance, and is still able 

to explain 44.2% of the variability in final BUS 111 course grade.   

The unstandardized coefficients (B) in this regression model indicate that we 

would expect a 0.078 point increase in final grade for each additional point in 

mathematical emotions. Additionally, we would expect students to earn an additional 

13.385 points in their final course grade for each additional point on their high school 

GPA and 1.784 more points for each higher level they placed into on the placement 

exam.  Finally, we could expect a drop of 2.992 points in BUS 111 course average for 

each class a student missed over the semester, indicating that after about three absences, 

we would anticipate a student’s final average to drop by a letter grade. 

 Again, this step-wise model, combining attitudes towards mathematics and 

mathematical anxiety as one independent variable (termed “mathematical emotions”), is 

likely the best model to use when predicting students’ overall course average in BUS 111 

Table 21.  SPSS Coefficients Table for Step-Wise MR Results with Math Emotions 
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at URI.  This model uses only four of the independent variables, yet it still explains 

nearly half of the variability in final course grade and easily satisfies collinearity 

statistics. 

Block-Wise/Hierarchical Results 

 Once these step-wise regression results were analyzed, variables were entered into 

the model in a block-wise method to investigate whether the new, less-researched, 

affective variables were significant on their own in student success.  The hierarchical 

results were of particular interest in this case because they helped address concerns of 

multicollinearity by grouping similar “blocks” of variables together and inserting them 

into the model one block at a time (using enter-all/simultaneous entry in each block).   

Similar to the other methods, the null hypothesis and alternative hypothesis for 

this analysis were as follows: 

H0:   The regression model is not significant for making predictions about overall 

BUS 111 average; none of the variance in BUS 111 average can be 

explained by the variables selected in a block-wise fashion because all of 

the coefficients in the model are zero. 

HA:  The regression model is significant for making predictions about overall 

BUS 111 grade; some of the variance in BUS 111 average can be 

explained by the variables selected in a block-wise fashion because at least 

one of the coefficients in the model is not equal to zero. 

This regression model hypothesis was tested using ANOVA analysis and the results are 

shown below.  As can be seen in Table 22, the F-statistic in the final step (Model 3, 

including all blocks) was F(8,135) = 14.023 with p = 0.000, so the null hypothesis was 

rejected and I could conclude that the model, using all of the independent variables, but 

organized in the block-wise analysis, was significant.  These are, of course, the same final 

statistics as were observed in the first enter-all analysis, as all of the independent 

variables were still being used.  The difference here is that, with this hierarchical 
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analysis, I was able to conclude that each block of variables was significant in the model.  

The first block entered included variables that have already been researched and included 

non-affective measures (placement score, gender, high school GPA, and mathematics 

SAT score).  I will refer to this block as the “Non-Affective Block”.  The second block 

entered included how much time students devoted to mathematics:  the hours they spent 

outside of class working on the material and the number of classes they missed.  I will 

refer to this block as the “Time Block”.  Finally, the third block consisted of the least 

quantitatively researched variables:  attitudes towards mathematics (ATMI scores) and 

mathematical anxiety (MAS scores).  I will refer to this final block as the “Mathematical 

Emotions Block”.  We can see from the ANOVA analysis that, even after the Non-

Affective Block was entered, adding in the Time and Mathematical Emotions Blocks 

contributed a statistically significant amount to the dependent variable, as both p-values 

were 0.000.  

 

 
   

  Non-Affective Block 

 

              Time Block 

 

             Mathematical Emotions Block 
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Knowing that the model was significant after the addition of each of the three 

blocks, I examined the regression coefficient as well as the R2 value for this block-wise 

analysis.  As shown in Table 23 below, using only the Non-Affective Block produced an 

R2 = 0.388, indicating that only 38.8% of the variance in BUS 111 course grade could be 

explained by these non-affective variables alone (Huck, 2012; Weiss 2008). It is 

important to note, however, that an additional 6.6% of the variance was explained by the 

addition of the Time Block and the Mathematical Emotions Block, so the affective and 

cognitive variables were also statistically significant in explaining course average.  

Additionally, the standard error of the estimate in the final model was still about 10.2, 

indicating that the observed BUS 111 averages differed from the values that would be 

predicted using this model by about 10.2 points (so within one letter grade). 

 

 

 
 

 

 

 

 

The regression equation that uses all of these independent variables in order to 

make predictions about students’ final course average in BUS 111 is shown below.  It 

should be noted that these final results, including all three blocks, are the same as they 

were in the initial enter-all model.  The collinearity statistics with just the Non-Affective 

Table 22.  SPSS ANOVA Table for Block-Wise MR Results 

Table 23.  SPSS Model Summary for Block-Wise MR Results  
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Block and Time Block are easily satisfied, with tolerance levels all above 0.74 and VIF 

scores all below 1.36 with an average VIF score of approximately 1.2. Using these two 

blocks alone explained 44.3% of the variance in overall BUS 111 course average.  VIF 

scores only go above 1.36 when the third block, mathematical emotions, is added into the 

model, because those two variables were strongly correlated with each other.  Since they 

were considered significant as a block, however (seen together), they are still significant 

in the overall model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-Affective vs. Affective Factors 

As described in the review of literature (chapter three), I was very interested in 

examining the usefulness and predictability of non-affective variables (such as test 

scores) versus affective variables (such as attitudes and time devoted to the subject) when 

it came to success in a business mathematics course.  Therefore, in addition to the 

hierarchical model, I also ran two separate multiple regression analyses based on 

predictors.  First, I examined the relationship between course average and non-affective 

Table 24.  SPSS Coefficients Table for Block-Wise MR Results  
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variables:  gender, SAT score, high school GPA, and placement score by entering these 

predictors into SPSS.  I then examined the relationship between BUS 111 grade and the 

affective, cognitive variables: number of absences, hours spent on mathematics outside of 

class per week, ATMI score, and MAS score by entering these predictors into SPSS to 

examine whether each model as a whole was significant in making predictions.  The null 

hypothesis and alternative hypothesis for these two sets of analyses were as follows: 

H01:   The regression model with non-affective variables is not significant for 

making predictions about overall BUS 111 average; none of the variance 

in BUS 111 average can be explained by these non-affective variables 

because the coefficients are all equal to zero. 

HA1:  The regression model with non-affective variables is significant for making 

predictions about overall BUS 111 grade; some of the variance in BUS 

111 average can be explained by these non-affective variables because at 

least one of the coefficients is not equal to zero. 

H02:   The regression model with affective and cognitive variables is not 

significant for making predictions about overall BUS 111 average; none of 

the variance in BUS 111 average can be explained by these affective and 

cognitive variables because the coefficients are all equal to zero. 

HA2:  The regression model with affective and cognitive variables is significant for 

making predictions about overall BUS 111 grade; some of the variance in 

BUS 111 average can be explained by these affective and cognitive 

variables because at least one of the coefficients is not equal to zero. 

I focused on the non-affective variables first.  The overarching hypothesis H01 was tested 

using ANOVA, the results of which are shown below.  As shown, the F-statistic was 

F(4,175) = 21.14 with p = 0.000, so the null hypothesis was rejected and I could conclude 

that the model, using all of the non-affective independent variables, was significant. 
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Knowing that the model was significant, I examined the R2 value for this enter-all 

analysis using high school GPA, placement score, mathematics SAT score, and gender.  

As shown below, using each of the non-affective independent variables produced an R2 = 

0.326, indicating that 32.6% of the variance in BUS 111 course grade could be explained 

by this regression model (Huck, 2012; Weiss 2008).  This is a significant amount of 

variability in course grade, but includes much less explainable variability than when the 

additional independent variables (mathematical anxiety, attitudes towards mathematics, 

time devoted to the subject, and number of classes missed) were added in (which 

corresponded to R2 = 0.454 in the enter-all analysis, or an additional 12.8% of the 

variability in final course average explained).  Additionally, the standard error of the 

estimate in the final model was about 13.14, indicating that the observed BUS 111 

averages differ from the values that would be predicted using this model by about 13.14 

points, which is higher than when affective variables were also considered. This indicates 

that using a combination of these affective and non-affective variables is preferable to 

using non-affective measures alone. 

  

 

 

 

The next piece of output to be analyzed in SPSS was the model itself, that is, the 

regression equation that uses these non-affective independent variables to make 

Table 25.  SPSS ANOVA Table for Non-Affective Measures in MR Results 

Table 26.  SPSS Model Summary for Non-Affective Measures in MR Results 
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predictions about students’ final course average in BUS 111.  Those results are printed 

below, in Table 27: 

 

 

 

 

 

 
 

 From this output, I was able to build and analyze the regression equation if all of 

the non-affective independent variables were used.  I will define these variables as I did 

before.  Then the regression equation is given as: 

𝑦 = 7.465+ 2.956𝑥! + 0.017𝑥! + 14.322𝑥! + 2.835𝑥! 

 The unstandardized coefficients (B) indicate that we would expect students to 

earn an additional 0.017 points in the course for each additional point earned on the SAT.  

Again, since the SAT is scaled in tens, it might be easier to think of this as a 1.7 point 

increase in course grade for each 100 point increase on the SAT.  We would also expect 

to see an increase of 14.322 points in BUS 111 average for each additional point earned 

on high school GPA and 2.835 points higher on final grade for each point on the 

placement exam.  Recalling that gender was dummy coded with male = “0” and female = 

“1”, and since the unstandardized coefficient for gender is positive, being a female tends 

to have a positive effect on BUS 111 course average while holding everything else 

constant.  Specifically, females can expect to earn about 2.956 points more than their 

male counterparts in this model.  This is interesting since fewer females tend to stick with 

the business major than males, as explained in more detail in chapter three.  I was also 

able to note that high school GPA and placement score were more significant than gender 

and SAT score, according to this model. 

Table 27.  SPSS Coefficients Table for Non-Affective Measures in MR Results 
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I then turned the focus to the less-researched, affective variables examined.  The 

overarching null hypothesis, H02, was tested using ANOVA analysis and the results of 

that analysis are shown below.  As can be seen in Table 28, the F-statistic was F(4,174) = 

16.039 with p = 0.000, so the null hypothesis was rejected and I was able to conclude that 

the model, using all of the affective, cognitive independent variables, was also significant 

in making predictions about final course average in BUS 111. 

 

 

 

  

 

After verifying that the model was significant, I examined the coefficient of 

determination (R2) value for this enter-all analysis using number of classes missed over 

the course of the semester, time devoted to mathematics outside of class, attitudes 

towards mathematics, and mathematical anxiety.  As shown in Table 29, using each of 

these independent variables produced an R2 = 0.269, indicating that 26.9% of the 

variance in BUS 111 course grade could be explained by this regression model alone 

(Huck, 2012; Weiss 2008).  Thus, without knowing any of the student’s previous test 

scores or gender, I would still be able to explain over a quarter of the variance in their 

BUS 111 average. This is a significant amount of variability in course grade, but again, 

allows us to explain less of the variability than when the additional non-affective 

variables were added in (which corresponded to R2 = 0.454, or an additional 18.5% of the 

variability in course average explained).  Here, the standard error of the estimate in the 

final model was about 12.46, indicating that the observed BUS 111 averages may differ 

from the values that would be predicted using this model by about 12.46 points, which is 

a smaller difference than when considering only non-affective measures, but still a 

greater difference than when considering a combination of these variables.   

Table 28.  SPSS ANOVA Table for Affective and Cognitive Measures in MR Results 
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I then analyzed the regression equation that used these affective, cognitive 

independent variables to make predictions about students’ final course average in BUS 

111.  Those results are printed below, in Table 30:  

 

 

 

 

 

 

From this output, I could build and analyze the regression equation if all of the 

affective and cognitive variables were used.  I note first, however, that the tolerance 

statistics and VIF scores are relatively close to their limits.  It still seems that combining 

mathematical anxiety and attitudes towards mathematics, as I did in the step-wise model, 

may help increase confidence in the model, which I will examine next.  I will define the 

variables again as they were defined before.  Then the regression equation is given as: 

𝑦 = 101.359− 0.364𝑥! + 0.010𝑥! − 1.797𝑥! − 3.565𝑥! 

The standardized coefficients (Beta) in this multiple regression model indicate 

that the order of significance in this model, starting with the most significant, is:  number 

of absences, time devoted to mathematics outside of class (which are both statistically 

significant predictors on their own, while holding everything else constant), followed by 

mathematical anxiety and attitude towards mathematics.  

Table 29.  SPSS Model Summary for Affective and Cognitive Measures in MR Results 

Table 30.  SPSS Coefficients Table for Affective and Cognitive Measures in MR Results 
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 The unstandardized coefficients (B) here indicate that we would expect a 0.364 

point drop in BUS 111 grade for each point scored on the MAS and a 0.010 point 

increase in grade for each additional point scored on the ATMI.  Thus, we would expect 

higher final averages for students with lower mathematical anxiety and more favorable 

attitudes towards mathematics.  We would also expect to see a 1.797 point drop in course 

average for each extra hour spent on the course.  Again, this may indicate that students 

who struggled with the material felt compelled to spend more time working on the course 

outside of class.  Finally, we could expect a drop of 3.565 points in course average for 

each class the student missed over the course of the semester. 

Since the VIF scores were close to their limits here, however, indicating potential 

multicollinearity concerns, I also examined the affective, cognitive independent variables 

after combining mathematical anxiety and attitudes towards mathematics as a single 

predictor:  mathematical emotions.  Here, the F-statistic was F(3,198) = 30.199 with p = 

0.000, so I was able to conclude that this model was also significant in making 

predictions about final course average in BUS 111. 

After verifying that the model was significant, I examined the R2 value for this 

analysis using number of classes missed over the course of the semester, time devoted to 

mathematics outside of class, and mathematical emotions.  As shown in Table 31 below, 

using each of these independent variables produced an R2 = 0.314, indicating that 31.4% 

of the variance in BUS 111 course grade could be explained by this regression model 

(Huck, 2012; Weiss 2008).   

 Model Summary 

Model R R Square Adjusted R Square 

Std. Error of the 

Estimate 

1 .560a .314 .304 12.76191 

a. Predictors: (Constant), Math_Emotions, Attendance_Post, Time_Spent_Post 

 

 
Table 31.  SPSS ANOVA Table for Affective and Cognitive Measures in MR Results with Math Emotions 
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I then analyzed the regression equation, which used these affective, cognitive 

independent variables to make predictions about students’ final course average in BUS 

111.  From this output, I was able to build and analyze the regression equation if these 

independent variables were used.  Defining the variables again as they were defined 

before, the regression equation is given as: 

𝑦 = 74.101+ 0.138𝑥!,! − 1.508𝑥! − 4.163𝑥! 

Individual Exams 

 As previously mentioned, each of the BUS 111 instructors gave students three 

different exams over the course of the semester leading up to an optional final exam.  

Together, these three exams accounted for between 70% and 75% of the students’ final 

course grades.  Because this course is so exam-heavy, I also analyzed the results of each 

of the three exams to determine which, if any, of the independent variables were 

significant in predicting each exam grade, and whether those variables differed from 

exam to exam.   

Exam One 

 Using the enter-all multiple regression analysis in SPSS, including all of the 

independent variables, I was able to account for 19.4% of the variance in exam one 

scores, which was a significant model overall (F(8,135) = 4.050; p = 0.000).  However, 

using step-wise multiple regression, SPSS revealed that the most efficient model would 

include only two variables:  placement score and high school GPA.  These predictors 

alone were able to explain 15.4% of the variance in exam one scores, and the change in 

R2 after the addition of each new variable was not significant enough to include in the 

step-wise model.   Additionally, each tolerance statistic was above 0.94 and each VIF 

score was below 1.06, with an average VIF of 1.054, which were all very good.  The 

standard error of the estimate was about 12.9, indicating that the observed exam one 

scores differed from the values predicted using this model by about 12.9 points.  Though 

we would like to see this value lower, being able to predict a student’s exam one score 
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within 13 points is still noteworthy.  Since this step-wise model is more efficient, the 

regression equation that could be used to predict student scores on exam one (using the 

same independent variables as identified earlier) would be: 

𝑦!"#$% = 52.432++5.694𝑥! + 2.564𝑥! 

This equation indicates that we could expect a 5.694% higher exam one grade for 

each additional point earned in high school GPA and a 2.564% higher exam one grade for 

each level increase on the placement exam.   Specifically, using this regression equation 

would indicate that a student in BUS 111 who earned a 3.2 GPA in high school and 

earned a 4 (group B/C) on the placement exam, would earn a predicted grade on exam 

one in BUS 111 of about a: 

𝑦!"#$% = 52.432+ 5.694(3.2)+ 2.564(4) 

     =  80.9088      (± 12.9)      (Thus, a letter grade of B-)  

Therefore, by examining a student’s university-developed mathematics placement score 

and high school GPA, we could predict her BUS 111 exam one grade to a moderate 

degree (within about a letter grade).   

 This first exam is administered, graded, and handed back to students before the 

university “drop date”, indicating that students who drop a course before this date are not 

penalized and their transcripts do not reflect that they were ever in the course.  Therefore, 

I wanted to further investigate the relationship between students’ exam one grades and 

their final course averages.  I found that these two scores were strongly, positively 

correlated with each other (r = 0.65; p = 0.000).  Furthermore, even though exam one was 

only worth 23-25% of the students’ final grades in BUS 111, 42.2% of the variability in 

their final averages was able to be explained using exam one grades alone (F(1,242) = 

176.9; p = 0.000).  Of the students who failed exam one during the Fall 2015 semester, 

only 35% ended up passing BUS 111 with a successful grade (C or better).  

Exam Two 
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 Using the enter-all multiple regression analysis in SPSS, including all of the 

independent variables, I was able to account for 33% of the variance in exam two scores, 

which was a significant model overall (F(8,135) = 8.324; p = 0.000) and it allowed me to 

explain much more of the variability in exam two grades than I was able to explain with 

exam one grades using these predictors.  Then, using step-wise multiple regression, SPSS 

outputs revealed that the most efficient model for predicting exam two scores would 

include three variables: high school GPA, the number of classes a student missed during 

the semester, and their mathematical anxiety.  Of course, number of classes missed in 

total would still be uncertain after exam two.  However, students could still be made 

aware of these relationships to encourage future attendance. These predictors were able to 

explain 30.6% of the variance, and the change in R2 after the addition of each variable 

was not significant enough to include in the step-wise model. Furthermore, each tolerance 

statistic was above 0.96 and each VIF score was below 1.04, with an average VIF of 

1.026.  The standard error of the estimate was about 16.5, indicating that the observed 

exam two scores differed from the values predicted using this model by about 16.5 

points.  Again, we would like to have closer estimates, but being able to predict a 

student’s exam two score within 16.5 points is still noteworthy.  Because the step-wise 

model was more efficient, the regression equation that could be used to predict exam two 

scores (using the same independent variables as identified earlier) would be: 

𝑦!"#$% = 49.085− 0.549𝑥! + 15.369𝑥! − 4.357𝑥! 

This equation indicates that, for each additional point on the MAS, we would 

expect a 0.549% decrease in exam two grade (so the more anxious a student is about 

mathematics, the lower we would expect his exam grade to be).  Further, we could expect 

a 15.369% higher exam two grade for each additional point earned in high school GPA, 

which indicates that someone who earned a 3.8 GPA in high school could expect to earn 

about 15.369 percentage points higher on exam two than a peer who earned a 2.8 GPA in 

high school.  Finally, for each class missed over the course of the semester, we would 
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expect a decrease of 4.357% in that student’s exam two score.  Unfortunately, this score 

cannot be predicted within a letter grade.  Specifically, using this regression equation 

would indicate that a student in BUS 111 who scored an anxiety level of 30 on the MAS, 

who earned a 3.2 GPA in high school, and who missed two classes over the course of the 

semester, would earn a predicted grade on exam two in BUS 111 of about a: 

𝑦!"#$% = 49.085− 0.549(30)+ 15.369(3.2)− 4.357(2) 

                =  73.0819      (± 16.5)                          (Thus, a letter grade of C)  

Therefore, by examining a student’s high school GPA, mathematical anxiety/MAS 

results, and attendance, we could predict his BUS 111 exam two grade to some 

reasonable degree of accuracy.  This may help encourage class attendance in BUS 111. 

 This second exam is generally (though not always) administered, graded, and 

handed back to students before the university’s final drop deadline, indicating that 

students can still drop a course before this date, but their transcripts will reflect that they 

were in the course with a “W” grade for “withdrew”.  Since students are still usually 

eligible to drop courses after exam two, I wanted to further investigate the relationship 

between students’ first two exam grades and their final course averages.  Over 55% of the 

students who failed exam one also failed exam two, and none of students who failed both 

exam one and exam two ended up successfully completing the course with a grade of C 

or better.  Looking at exam two grades alone, I discovered that less than 15% of the 

students who failed exam two ended up successfully completing BUS 111.  Even though 

the first two exams together were only worth 46-50% of the students’ final grades in BUS 

111, 79% of the variability in their final averages was able to be explained using exam 

one and exam two scores alone.  Additionally, the standard error of estimate here was 

only 8.2 points. This was a significant model and, as shown in the printouts below, 

students’ final averages could be predicted within about 8 points using the equation: 

𝑦 = 7.238+ 0.379 Exam 1 Score + 0.525(Exam 2 Score) 
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Exam Three 

 Finally, by using the enter-all multiple regression analysis in SPSS, including all 

of the independent variables, I was able to account for 39.6% of the variance in exam 

three scores, which was a significant model overall (F(8,135) = 11.047; p = 0.000) and 

produced the highest explainable variability of the three exams.  However, using step-

wise multiple regression, SPSS outputs revealed that the most efficient model for 

predicting exam three grades would include only four of the examined variables:  

mathematical anxiety, the number of classes the student missed (which would be known 

to a fairly exact amount by this time), their placement score, and their high school GPA.  

These predictors were able to explain 36.5% of the variance, and the change in R2 after 

the addition of each new variable was not significant enough to include in the step-wise 

model.  Additionally, each tolerance statistic was above 0.75 and each VIF score was 

below 1.33, with an average VIF of 1.176, which are considered very good.  The standard 

error of the estimate was about 16.1, indicating that, similar to exam two, the observed 

exam three scores differed from the values predicted using this model by about 16.1 

Figure 28.  SPSS ANOVA Table, Model Summary, and Coefficients Table for Exams in MR Results 
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points.  Since this step-wise model is more efficient, the regression equation that could be 

used (using the same independent variables as identified earlier) would be: 

𝑦!"#$% = 22.354− 0.413𝑥! + 17.476𝑥! + 2.720𝑥! − 2.326𝑥! 

This equation indicates that, for each additional point on the MAS, we would 

expect to see a 0.413% decrease in exam three grade (so, similar to exam two, the more 

anxious a student is about mathematics, the lower we would expect her exam grade to 

be).  Further, we could expect an additional 17.476 percentage points to be earned on 

exam three for each additional point earned in high school GPA and an additional 2.72 

percentage points on exam three for each level increase (out of seven levels) on URI’s 

mathematics placement exam.  Finally, for each class missed over the course of the 

semester, we would expect a decrease of 2.326% in that student’s exam three score.  This 

score also can only be predicted within about one and one half letter grades.  Specifically, 

using this regression equation would indicate that a student in BUS 111 who scored a 30 

on the MAS measuring anxiety, who earned a 3.2 GPA in high school, who placed in 

group 4 (group B/C) on the placement exam, and who missed two classes over the course 

of the semester, would earn a predicted grade on exam three of about a: 

𝑦!"#$% = 22.354− 0.413(30)+ 17.476(3.2)+ 2.720(4)− 2.326(2) 

=  72.1152      (± 16.1)                                   (Thus, a letter grade of C-)  

Therefore, by examining a student’s high school GPA, mathematical 

anxiety/MAS results, placement score, and attendance, we would be able to predict her 

BUS 111 exam three grade to some moderate degree of accuracy. 

Gender-Specific Results 

Research Question Addressed:  Are the predictive factors examined in BUS 111 

different for male and female students? 

 Because there were significant differences discovered in final course grades 

between male and female students in BUS 111, and because t-tests revealed significant 
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differences in some of the predictor variables based on gender (as explained above), I 

also ran multiple regression analyses on each gender separately (Smith & Schumacher, 

2005).  First, I used simultaneous (enter-all) multiple regression on male participants 

only.  Using all of the independent variables except gender, I was able to explain 51.3% 

of the variance in males’ BUS 111 final average (F(7,73) = 10.968; p = 0.000).  Though 

collinearity statistics were satisfied, with all tolerance levels above 0.3 and all VIF scores 

below 3.31, a more parsimonious model was desirable, especially if a new model allowed 

these tolerance statistics to increase, thus reducing the risk of multicollinearity.  

 Therefore, I again combined attitudes towards mathematics and mathematical 

anxiety into one variable:  mathematical emotions.  Here, I was able to explain 52.3% of 

the variability in males’ BUS 111 final average (F(6,80) = 14.632; p = 0.000).  With the 

combination of these scores, tolerance levels were all above 0.74 and all VIF statistics 

were all below 1.35, indicating this was likely a better model.  However, even in this 

model, as shown in Table 32 below, not all of the predictor variables were significant on 

their own, while holding everything else constant.  Mathematical emotions, number of 

classes missed, and high school GPA appeared to be the most significant in this model. 

 

 

 

 

 

 
 

 

 

 Table 32.  SPSS Model Summary/Coefficients Table for Males in MR Enter-All Results  
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Therefore, I followed by using step-wise multiple regression, where SPSS 

revealed that the most efficient model would include only three predictor variables for 

males:  the number of classes they missed over the course of the semester, their 

placement score, and their high school GPAs (F(3,83) = 26.077; p = 0.000).  These 

predictors alone were able to explain 48.5% of the variance, as shown below, and the 

change in R2 after the addition of each variable was not significant enough to include in 

the step-wise model.  Further, in this regression model, all tolerance statistics were above 

0.966 and all VIF scores were below 1.035 with an average VIF of about 1.029, which 

are considered very strong.  Additionally, the standard error of the estimate was about 

11.2, indicating that the observed BUS 111 averages of male students differed from the 

values predicted using this model by about 11.2 points.  This indicates that male’s final 

averages would be predictable within about a letter grade.   

 

 

 

 

 

 

 

 

 

 

 

Since this step-wise model is also more efficient using fewer variables, the 

regression equation that could be used (using the same variables as identified earlier) to 

predict male students’ final averages in BUS 111 would be: 

𝑦 = 25.064+ 15.014𝑥! + 2.16𝑥! − 4.206𝑥! 
Table 33.  SPSS Model Summary/Coefficients Table for Males in MR Step-Wise Results  
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This equation indicates that we could expect male students to earn 15.014 points 

higher in BUS 111 for each additional point earned in high school GPA and an additional 

2.16 points in final course average for each level increase of the placement exam.  

Finally, for each class the student missed, we would anticipate a 4.206 point decrease in 

his BUS 111 final average.  Specifically, for example, using this regression equation 

would indicate that a male student in BUS 111 who earned a 2.9 GPA in high school, 

who placed in group 4 (group B/C) on the placement exam, and who missed one class 

over the course of the semester, would earn a predicted final course grade in BUS 111 of 

about a: 

𝑦 = 25.064+ 15.014(2.9)+ 2.16(4)− 4.206(1) 

 =  73.0386      ± 11.2                              (Thus, a letter grade of C)  

Therefore, by examining a male student’s attendance, mathematics placement score, and 

high school GPA, we could predict his BUS 111 course grade to a reasonable degree of 

accuracy. 

After this analysis, I used simultaneous (enter-all) multiple regression on female 

participants only.  Using all of other the independent variables, I was able to explain 

41.9% of the variance in females’ BUS 111 final average (F(7,55) = 5.678; p = 0.000).  

Again, however, tolerances were all above 0.147 and VIF scores were all below 6.81, 

which are acceptable, but could warrant further investigation to address multicollinearity 

concerns.  Since all VIF scores were below 2 except for ATMI and MAS results, a 

different model or combination of variables was desired.  

Thus, I again combined attitudes towards mathematics and mathematical anxiety 

into one variable:  mathematical emotions.  Here, I was able to explain 42.1% of the 

variability in females’ BUS 111 final average (F(6,58) = 7.031; p = 0.000).  With the 

combination of these scores, tolerance levels were all above 0.71 and all VIF statistics 

were all below 2.05, indicating this was likely a better model.  However, even in this 

model, as shown in the printout (Table 34) below, only a few of the predictor variables 
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were found to be significant on their own, while holding everything else in the model 

constant, so further investigation was appropriate.  Mathematical emotions, placement 

score, and high school GPA appeared to be the most significant in this model. 

 

 

 

 

 

 

 

 

 
 

Similar to male students, using step-wise multiple regression, SPSS revealed that 

the most efficient model would include only two predictor variables for females: their 

placement scores and their high school GPAs (F(2,62) = 19.302; p = 0.000).  These 

predictors alone were able to explain 38.4% of the variance, as shown below, and the 

change in R2 after the addition of each variable was not significant enough to include in 

the step-wise model.  Further, all tolerance statistics were then above 0.88 and all VIF 

scores were below 1.14 with an average VIF of 1.134, which are again considered much 

better than they were in the enter-all model. Additionally, the standard error of the 

estimate was about 9.9, indicating that the observed BUS 111 averages of female students 

differed from the values predicted using this model by about 9.9 points.  This indicates 

that female’s final averages would be predictable within a letter grade as well.  

 

 

Table 34.  SPSS Model Summary/Coefficients Table for Females in MR Enter-All Results  
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Since this step-wise model is also more efficient, using fewer predictors, the 

regression equation that could be used (using the same independent variables as identified 

earlier) to predict female students’ final averages in BUS 111 would be: 

𝑦 = 35.651+ 10.18𝑥! + 2.844𝑥! 

This equation indicates that we could expect female students to earn an additional 

10.18 points in BUS 111 course grade for each additional point earned in high school 

GPA and an additional 2.844 points in course average for each level increase of the 

placement exam. Specifically, using this regression equation would indicate that a female 

student in BUS 111 who earned a 2.9 GPA in high school and who placed in group 4 

(group B/C) on the placement exam would earn a predicted final grade in BUS 111 of 

about a: 

𝑦 = 35.651+ 10.18(2.9)+ 2.844(4) 

=  76.549      (± 9.9)                      (Thus, a letter grade of C)  

Therefore, by examining only a female student’s university mathematics placement score 

and high school GPA, we could predict her BUS 111 course grade to a relatively accurate 

degree. 

Table 35.  SPSS Model Summary and Coefficients Table for Females in MR Step-Wise Results  
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 These results indicate that it may be easier to predict BUS 111 final course grades 

for male students than for female students, at least using this set of independent variables, 

and that mathematical emotions may play a more significant role in males’ business 

mathematics final grades than in females’ final course grades.  Since the male to female 

ratio in BUS 111 is generally around 3:2, this is definitely a practically significant 

discovery for the College of Business.  For male students, over half of the variability in 

their final course grade in BUS 111 could be explained by the predictors used here:  SAT 

score, high school GPA, university placement score, attitude towards mathematics, 

mathematical anxiety, hours spent working on mathematics outside of class, and number 

of classes missed. 

Instructor-Specific Results 

 Because there were some significant differences revealed by the ANOVA 

analyses among the three different instructors, I thought it might be prudent to analyze 

each instructor separately to see if the variables that were significant for students in one 

instructor’s class may be different than those from another instructor’s class.  The results 

of these individual analyses are shown below.  It is important to note first that these 

results may be misleading for Instructor 3’s class, as she only had 29 students 

participating in this research, and therefore the multiple regression analyses may not be 

appropriate for this number of predictors and this small of a sample.  However, for 

Instructor 1 and Instructor 2, the sample sizes are appropriate. 

Instructor 1 

First, I used simultaneous (enter-all) multiple regression on Instructor 1’s 

participants only.  Using all of the independent variables, I was able to explain 51% of 

the variance in Instructor 1’s students’ BUS 111 final course averages (F(8,70) = 9.105; p 

= 0.000).  Though collinearity statistics were satisfied, the lowest tolerance levels were 

only just above 0.18 and the VIF scores were sometimes as high as 5.513.  Thus, a more 



 178 

effective model was desirable, especially if a new model allowed these tolerance statistics 

to increase, thus reducing the risk of multicollinearity.  

 Therefore, I again combined attitudes towards mathematics and mathematical 

anxiety into one variable:  mathematical emotions.  At that point, I was able to explain 

55.7% of the variability in the BUS 111 final averages of students in Instructor 1’s class 

(F(7,75) = 13.491; p = 0.000), which is a very significant amount of variance explained.  

With the combination of these scores, tolerance 

levels were all above 0.55 and all VIF statistics were below 1.8, indicating this was likely 

a better model.  However, even in this model, as shown in Table 36 below, only some of 

the predictor variables were significant on their own, while holding everything else 

constant.  Number of classes missed over the semester and high school GPA appeared to 

be the most significant. 

 

Instructor 1 

Instructor 1 

Instructor 1 
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Therefore, I then used step-wise multiple regression, where SPSS revealed that 

the most efficient model would include only three predictor variables for Instructor 1’s 

students’ final course averages:  the number of classes they missed over the course of the 

semester, their placement score, and their high school GPAs (F(3,79) = 30.126; p = 

0.000).  These predictors alone were able to explain 53.4% of the variance, as shown in 

Table 37 below, and the change in R2 after the addition of each variable was not 

significant enough to include in the step-wise model.  Further, in this regression model, 

all tolerance statistics were above 0.89 and all VIF scores were below 1.12 with an 

average VIF of about 1.08, which are considered very strong.  Additionally, the standard 

error of the estimate was about 9.5, indicating that the observed BUS 111 averages of 

students in Instructor 1’s class differed from the values predicted using this model by 

about 9.5 points.  Similar to males and females, this indicates that the final averages of 

students in Instructor 1’s class were predictable within about a letter grade.   

Instructor 1 

Instructor 1 
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This step-wise model is also more efficient, because it uses fewer variables, so the 

regression equation that would be recommended for use (using the same variables as 

identified earlier) to predict students’ final averages in BUS 111, if taken with Instructor 

1, would be: 

𝑦 = 38.688+ 12.527𝑥! + 1.47𝑥! − 4.358𝑥! 

This equation indicates that we could expect students in Instructor 1’s class to 

earn 12.527 more points in BUS 111 for each additional point earned in high school GPA 

and an additional 1.47 points in final course average for each level increase of the 

placement exam.  Finally, for each of Instructor 1’s classes the student missed, we would 

anticipate a 4.358 point decrease in their BUS 111 final average.  Specifically, for 

example, using this regression equation would indicate that a student in Instructor 1’s 

section of BUS 111 who earned a 2.9 GPA in high school, who placed in group 4 (group 

B/C) on the placement exam, and who missed one class over the course of the semester, 

would earn a predicted final course grade in BUS 111 of about a: 

𝑦 = 38.688+ 12.527(2.9)+ 1.47(4)− 4.358(1) 

Instructor 1 

Table 37.  SPSS Model Summary/Coefficients Table for Instructor 1 in MR Step-Wise Results  
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Instructor 2 

Instructor 2 

=  76.5383      (± 9.5)                                (Thus, a letter grade of C)  

Therefore, by examining a student’s attendance, mathematics placement score, and high 

school GPA in Instructor 1’s class, we could predict her BUS 111 course grade to a 

reasonable degree of accuracy (within one letter grade). 

Instructor 2 

Similar to Instructor 1’s students, I started by using simultaneous (enter-all) 

multiple regression on Instructor 2’s student participants only.  Using all of the 

independent variables, I was able to explain 53.2% of the variance in Instructor 2’s 

students’ BUS 111 final course averages (F(8,48) = 6.812; p = 0.000).  Though 

collinearity statistics were satisfied, the lowest tolerance levels were only just above 0.26 

and the VIF scores were only below 3.5.  Thus, again, a more effective model was 

desirable, especially if a new model allowed these tolerance statistics to increase, thus 

reducing the risk of multicollinearity.  

 Therefore, I again combined attitudes towards mathematics and mathematical 

anxiety into the mathematical emotions variable.  Here, I was able to explain less of the 

variability in the BUS 111 final averages of students in Instructor 2’s class, 48.9% 

(F(7,53) = 7.255; p = 0.000), but still a significant amount of variance could be 

explained.  With the combination of these scores, tolerance levels were all above 0.6 and 

all VIF statistics were below 1.65, indicating this was likely a better model.  However, 

even in this model, as shown in Table 38 below, only some of the predictors were 

significant on their own, while holding everything else constant.  Here, high school GPA, 

mathematics SAT score, placement score, and gender appeared to be the most significant. 
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Thus, I then implemented a step-wise multiple regression, and SPSS revealed that 

the most efficient model would include only three predictor variables for Instructor 2’s 

students’ final course averages: their placement score, their high school GPAs, and now, 

instead of absences, mathematics SAT scores were a better predictor for Instructor 2’s 

students (F(3,57) = 13.716; p = 0.000).  These three predictors were able to explain 

41.9% of the variance, as shown below, and the change in R2 after the addition of each 

variable was not significant enough to include in the step-wise model.  In this regression 

model, all tolerance statistics were above 0.75 and all VIF scores were below 1.33 with 

an average VIF of about 1.22, which are considered strong.  The standard error of the 

estimate was about 12.3, indicating that the observed BUS 111 averages of students in 

Instructor 2’s class differed from the values predicted using this model by about 12.3 

points, so again, about one letter grade.  

 

In the following table (Table 40), the coefficients corresponding to this model are 

provided. Because this step-wise model is also more efficient, as it uses fewer variables, 

the regression equation that would be recommended for use (using the same variables as 

identified earlier) to predict students’ final averages in BUS 111 taken with Instructor 2 is 

given below the coefficients table. 

Instructor 2 

Instructor 2 

Table 38.  SPSS Model Summary and Coefficients Table for Instructor 1 in MR Enter-All Results  

Table 38.  SPSS Model Summary/Coefficients Table for Instructor 2 in MR Enter-All Results  

Table 39.  SPSS Model Summary for Instructor 2 in MR Step-Wise Results  
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𝑦 = −37.323+ 0.094𝑥! + 14.943𝑥! + 2.726𝑥! 

 

This equation indicates that we could expect students in Instructor 2’s class to 

earn 14.943 points higher in BUS 111 for each additional point earned in high school 

GPA, an additional 2.726 points in final course average for each level increase of the 

placement exam, and an additional 0.094 points in their BUS 111 final average for each 

additional point earned on the mathematics portion of the SAT (or about 9.4 additional 

points for each 100 point increase in SAT score).  Specifically, for example, using this 

regression equation would indicate that a student in Instructor 2’s section of BUS 111 

who earned a 2.9 GPA in high school, who placed in group 4 (group B/C) on the 

placement exam, and who earned a 580 on the mathematics SAT, would earn a predicted 

final course grade in BUS 111 of about a: 

𝑦 = −37.323+ 0.094 580 + 14.943(2.9)+ 2.726(4) 

=  71.4357      ± 12.3                                 (Thus, a letter grade of C-)  

Instructor 2 

Table 40.  SPSS Coefficients Table for Instructor 2 in MR Step-Wise Results  
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Therefore, by examining a student’s mathematics SAT score, mathematics placement 

score, and high school GPA in Instructor 2’s class, we could also predict his BUS 111 

course grade to a reasonable degree of accuracy (varying by about one letter grade). 

Instructor 3 

Finally, I examined Instructor 3’s student participants only.  With a sample size of 

only 29, I was unable to run an enter-all (simultaneous) multiple regression analysis, as 

there were too many predictor variables for the small sample.  Therefore, I again 

combined attitudes towards mathematics and mathematical anxiety into the mathematical 

emotions variable.  I then used step-wise multiple regression, and SPSS revealed that the 

most efficient model would include only one predictor variable for Instructor 3’s final 

course averages:  gender (F = 9.163; p = 0.023).  The gender predictor alone was able to 

explain 60.4% of the variance in Instructor 3’s final class averages, as shown below, and 

the change in R2 after the addition of each variable was not significant enough to include 

in the step-wise model.  Further, in this regression model, the tolerance statistic and the 

VIF score were 1.000 (as would be expected, since only one independent variable was 

included in the model).  The standard error of the estimate for this step-wise model was 

only about 4.8, indicating that the observed BUS 111 final averages of students in 

Instructor 3’s class differed from the values predicted using this model by less than five 

points (within half of a letter grade).  

In the following table, the coefficient corresponding to this model is provided. 

The regression equation that could be used (using the same variable x3 = gender as 

Instructor 3 

Instructor 3 

Instructor 3 

Table 41.  SPSS Model Summary for Instructor 3 in MR Step-Wise Results  
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identified earlier) to predict students’ final averages in BUS 111 taken with Instructor 3 is 

given below the coefficients table. 

 

𝑦 = 74.792+ 10.3𝑥! 

This equation indicates that we could expect female students in Instructor 3’s 

class to earn 10.3 points higher in final BUS 111 grade than their male counterparts.  

Specifically, for example, using this regression equation would indicate that a female 

student in Instructor 3’s section of BUS 111 would earn a predicted final course grade in 

BUS 111 of about a: 

𝑦 = 74.792+ 10.3(1) 

=  85.092      (± 4.8)          (Thus, a letter grade of B)  

Similarly, we would expect that a male student in Instructor 3’s section of BUS 111 

would earn a predicted final course grade in BUS 111 of about a: 

𝑦 = 74.792+ 10.3(0) 

=  74.792      (± 4.8)          (Thus, a letter grade of C)  

Therefore, by examining a student’s gender alone in Instructor 3’s class during 

the Fall 2015 semester, we could also predict their BUS 111 course grade.  Again, it 

should be stressed that Instructor 3 only had 29 students participating in this research, so 

the sample size is too small to make generalized conclusions and further investigation 

would need to be carried out to make more confident predictions about final BUS 111 

course grades for this specific instructor. 

Other Noteworthy Results 

 Other regression models were run in SPSS to investigate various relationships 

between certain variables.  One model I was particularly interested in examining was 

what variables (other than a student’s final course grade) might predict a student’s 

attitude towards mathematics and their level of mathematical anxiety at the end of the 

Table 42.  SPSS Coefficients Table for Instructor 3 in MR Step-Wise Results  
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BUS 111 course.  Step-wise multiple regression analyses revealed that 31.9% (p = 0.000) 

of the variance in a student’s attitude towards mathematics and 29.9% (p = 0.000) of the 

variance in a student’s mathematical anxiety could be explained by the combination of 

only two predictor variables:  their mathematics placement score and their final perceived 

effectiveness of their BUS 111 instructor.  This suggests that how students are initially 

placed in college mathematics (their labeled ability) and how well they believe their 

course instructor can deliver the material may play a large role in their attitudes and 

anxiety in mathematics. 

Correlational Results 

 Research Question Addressed:  What is the relationship between perceived 

instructional quality and success in the BUS 111 course at URI? 

Perceived Instructor Effectiveness and ATMI 

I initially hypothesized that students’ attitudes towards mathematics (as measured 

by the ATMI) may correlate with how effective they perceived their instructor to be.  The 

role of the instructor is momentous in how students approach mathematical processes and 

how they value the subject (Blaszczynski, 2001; Hiebert & Grouws, 2007).  The results 

of the pre-surveys revealed a statistically significant, positive (though relatively weak) 

correlation between perceived instructor effectiveness and students’ pre-survey ATMI 

results (r = 0.296, p = 0.000).  This indicates that students with more favorable attitudes 

towards mathematics were also slightly more likely to initially believe that their 

instructors were capable of effectively delivering the BUS 111 course material.  

Similarly, the results of the post-surveys revealed a statistically significant, positive 

correlation (which was stronger than the relationship from the pre-surveys) between 

perceived instructor effectiveness and ATMI results (r = 0.312 p = 0.000).  Therefore, 

students who ended the course with more favorable attitudes towards mathematics were 

also more likely to believe that their BUS 111 instructor had effectively delivered the 

course material. 
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Perceived Instructor Effectiveness and MAS 

 I also hypothesized that students’ mathematical anxiety may correlate with how 

effective they perceived their instructor to be, as instructors may impact how anxious 

students feel about mathematics, or anxiety may impact how effective students perceive 

their instructors.  The results of the pre-surveys revealed a statistically significant, 

negative (though fairly weak) correlation between perceived effectiveness and students’ 

MAS results (r = -0.222; p = 0.001).  This indicates that students with higher levels of 

mathematical anxiety coming into the BUS 111 course also believed their instructors 

were less likely to be capable of effectively delivering course material.  Similarly, the 

results of the post-surveys revealed a statistically significant, negative correlation 

between perceived effectiveness and MAS results, which was stronger than the 

correlation with the results from the pre-surveys (r = -0.320 p = 0.000).  Thus, students 

who ended the course with high mathematical anxiety were also less likely to report that 

their instructor was effective at delivering the course material. 

Perceived Instructor Effectiveness and Time Spent 

One unanticipated result from this research was the statistically significant 

correlation that existed between the amount of time students reported spending on 

mathematics outside of class per week and how effective they perceived their instructor 

to be.  There was a statistically significant, negative correlation between these two 

variables (r = -0.284; p = 0.000), indicating that students who spent less time working on 

BUS 111 outside of class also tended to perceive their instructors as more effective at 

delivering the course material.  There was no correlation, however, between how many 

classes a student missed over the course of the semester and how effective they perceived 

their instructor to be.  Thus, perceived effectiveness seems to be related to how many 

hours students spent outside of class working on mathematics, but unrelated to the 

amount of time they spent in class. 

Perceived Instructor Effectiveness and Course Average 
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 Students often make decisions about the effectiveness of their instructor early in 

the semester.  Once students begin to receive grades and determine their likelihood of 

being successful in a course, however, their perceptions of their instructors sometimes 

change.  On the pre-surveys, a statistically significant, positive correlation was found 

between perceived effectiveness of the instructor and students’ overall BUS 111 course 

averages (r = 0.173; p = 0.010).  Similarly, on the post-surveys, a stronger (though still 

relatively weak), statistically significant, positive correlation existed between perceived 

instructor effectiveness and course averages (r = 0.293; p = 0.000).  This relationship 

may indicate that students who were successful in the course were willing to attribute 

some of their success to their instructor’s effectiveness.  Alternatively, students may have 

perceived their instructor to be more effective at teaching the material due to the fact that 

they were able to earn a successful grade in the course.  Causation cannot be assumed. 

Concluding Remarks 

With the results from each of these analyses in mind, some overall conclusions 

can be drawn about the relationship between these variables and their influence on 

student success.  First, students’ attitudes towards mathematics appear to be very closely 

related to their mathematical anxiety.  Specifically, students with higher levels of 

mathematical anxiety tend to hold less favorable attitudes towards mathematics.  Because 

of this strong, negative relationship, in the multiple regression analyses presented in this 

chapter, it was often better to consider a student’s overall “mathematical emotions” by 

combining these two measures, rather than looking at them separately.  An average of the 

two scores could be used, or we could measure the overall emotion variable as the MAS 

score subtracted from the ATMI score (as was done here), or we could use only one of 

these two measures in future analyses on success in business mathematics courses.   

Since mathematical anxiety had a slightly stronger correlation with final BUS 111 course 

average than attitudes towards mathematics (r = -0.452 and r = 0.436, respectively) and 

the instrument to measure anxiety is shorter in length than the instrument measuring 
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attitudes towards mathematics (14 questions versus 40 questions), I might suggest using 

only MAS scores for analysis, for example. 

Another important conclusion is that, in general, some combination of affective, 

cognitive measures and non-affective measures, such as test scores, is best to use in order 

to predict overall course grade in a business mathematics class.  While using only test 

scores and other measures such as gender, high school GPA, mathematics SAT score, and 

the university placement grouping might help explain some of the variability in BUS 111 

average, adding in predictors such as mathematical anxiety/attitudes towards 

mathematics, time devoted to the subject outside of class, and number of absences over 

the course of the semester will allow us to explain more of the variability in final course 

grade.  Therefore, it is important for admissions teams, advisors, and instructors to gather 

information that focuses on the whole student, not just a student’s previous measures of 

achievement.  The implications of these findings are discussed in more detail in chapter 

six. 

Of all of the models presented here, keeping sample size and overall usability in 

mind, likely the best model, which I would recommend for use, would be the step-wise 

regression model combining students’ mathematical anxiety and attitudes towards 

mathematics as the single predictor variable:  mathematical emotions.  Again, this model 

was: 

 

𝑦 = 22.503 + 0.078(MathEmotions) + 13.385(HSGPA) + 1.784(Placement) − 2.992(Absences) 

This model was able to explain 44.2% of the overall variability in final BUS 111 

course grades for all BUS 111 students.  To further verify the accuracy of this model, I 

used SPSS to randomly split my sample in half.  I then used one of those halves to re-run 

the step-wise multiple regression analysis and make sure it was similar to the original 

model.  Though the new R2 value was slightly higher at 47.3%, no significant differences 

existed between this test group and the original model (which included all student 
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participants).  With the other random half of the sample selected, I tested the regression 

model as written above against students’ actual final averages (M. Shim, personal 

communication, September 2014).  Finally, I ran a paired samples t-test analysis to 

investigate whether differences between these predicted averages and the actual BUS 111 

final course averages existed at a statistically significant level.  Thus, the null and 

alternative hypotheses for this statistical test were as follows: 

H0:   The mean of the predicted averages (𝜇!) is equal to the mean of the observed 

averages (𝜇!).  In other words: 𝜇! =  𝜇! 

HA:  The mean of the predicted averages (𝜇!) is not equal to the mean of the 

observed averages (𝜇!).  In other words: 𝜇! ≠  𝜇! 

 As shown in the SPSS output below, p = 0.158, so I failed to reject the null 

hypothesis and thus was able to conclude that no statistically significant differences 

existed between the predicted averages, as given in the model, and students’ actual final 

averages in BUS 111.   

 

 

 

 

 

 
 

 Therefore, this model is useful for making predictions about final course grade. 

Because this model uses only four predictor variables (mathematical emotions, high 

school GPA, placement exam score, and number of absences over the course of the 

semester), it is also practically significant for the business advisors to use as they talk to 

Table 43.  Paired-Samples t-test for Predicted and Actual Observations  
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prospective business majors about BUS 111.  However, this model and the included 

variables also have significant implications for business mathematics courses in general, 

which are discussed in detail in the following chapter. 
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CHAPTER SIX: 
IMPLICATIONS AND DISCUSSION 

In this study, I investigated which factors were significant predictors of college 

student business mathematics achievement through a quantitative multiple regression 

analysis using the results from a survey coupled with pre-existing data. Specifically, I 

examined students’ attitudes towards mathematics, students’ varying levels of 

mathematical anxiety, the number of business mathematics classes each student missed, 

the time each student devoted to mathematics outside of class each week, mathematics 

SAT scores, gender, scores earned on the university’s mathematics placement exam, and 

high school GPAs.  The findings described in the previous chapter can be used to inform 

future practice, policy decisions, and research initiatives in the College of Business 

Administration as well as the Mathematics Department at URI and other colleges and 

universities, as this sample was similar to the national representation of schools of 

business.  The predictive relationships discovered from the multiple regression equations, 

in addition to the correlational relationships described, could be used to inform future 

decisions for the business mathematics curriculum and could also help inform potential 

instructional design techniques employed in the College of Business and elsewhere.   

In the remainder of this chapter, I begin by discussing five main policy 

implications that have arisen from my research:  (1) a necessary shift in focus from 

college-readiness to student-readiness, (2) a call for personalization of the instructional 

environment, (3) necessary curricular and instructional changes, (4) the implementation 

of more formal instructor evaluation procedures, and (5) suggested changes to the current 

university mathematics placement exam procedure for business majors.  After this, I 

examine some of the current reform efforts being implemented in institutions of higher 

education in an attempt to promote student-readiness and college-readiness in 

mathematics-based courses.  I discuss the strengths and weaknesses of these programs 

and examine their potential for implementation and success at URI.  Finally, I provide 

suggestions and questions for future research that have arisen from this study. 
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Policy Recommendations 

Change in Focus:  From College-Readiness to Student-Readiness 

 In chapter three, I described the difference between college-readiness and student-

readiness.  College-readiness is frequently written about and discussed by teachers, 

professors, students, parents, and college advisors (Bilsky, 2011; Blanchard, 2008; 

Conley, 2007; Corbishley & Truxaw, 2010; Doubleday, 2013; Frost et al., 2009; Long et 

al., 2009; Thiel et al., 2008; Zelkowski, 2011).  The idea of a student being college-ready 

implies that she has developed and made changes as necessary in an attempt to become 

prepared for a successful academic life in college.  She has learned about what it means 

to be “college material” and is prepared to fit the mold that colleges have created for her.  

I believe that a major shift in focus needs to occur to move the responsibility from the 

students to instead a shared responsibility among teachers, college staff, and students.  In 

other words, student-readiness must also enter the discussion if we want to enhance the 

learning experiences and opportunities for students in higher education. 

 Student-readiness would involve college instructors and university staff members 

working with K-12 educators to prepare coursework and make necessary adjustments to 

suit the interests and needs of their incoming students.  Institutions of higher education 

are essentially businesses, which rely on their students’ loyalty (as customers) in order to 

stay in business.  Without the students and their tuition dollars, a university would cease 

to exist.  Companies do not expect their customers to change their demands to fit the 

current supply, and similarly, universities should not expect their students to change their 

needs to fit what the university is currently offering. If a university cannot fit the needs 

and satisfy the interests of a student, that student will choose to take their business 

elsewhere.  And they should.  University faculty members and administrators must take 

the time to investigate the needs and desires of their incoming students each year to 

ensure they are offering these customers a quality education that is both meaningful and 

supportive of their interests.  What must be recognized is that, especially after years of 
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studying mathematics or business, instructors develop a certain appreciation for the 

content and they value its importance in their work.  After 15 weeks in a course, 

instructors cannot expect students to simply mimic or create this deep connection; 

instead, instructors should allow students to develop and evaluate their own relationships 

with mathematics.  By talking to students on a regular basis and communicating with 

secondary educators, colleges can personalize the learning environment, perform a needs 

assessment for their academic programs, and make adjustments as necessary (Frost et al., 

2009; Travis, Hursh, Lankewicz,  & Tang, 1996).  Working towards student-readiness 

would involve the implementation of support systems designed to foster student 

relationships with their instructors as well as student relationships with mathematics. 

 The remaining policy recommendations, described in detail below, focus on 

helping colleges become more student-ready.  Many universities rely on students’ high 

school GPAs and SAT scores to determine whether that student is prepared for the 

current state of the university.  Given that the results of this research (described in detail 

in chapter five) revealed the importance of students’ attitudes towards mathematics, 

students’ mathematical anxiety, and time devoted to mathematics when it comes to 

success in a course, colleges can make changes to better prepare for the needs of the 

students attending. 

Personalizing Instructional Environments (Reduction in Class Size)  

 Currently, class sizes in college mathematics courses and business mathematics 

courses vary greatly across the nation.  However, these courses tend to be medium or 

large lectures, holding at least 40-50 students, and accommodating as many as 200-300 

students (Frost et al., 2009; Guder et al., 2011; Zelkowski, 2011).  Due to a recent 

combination of a greater number of high school graduates and a greater demand for 

business majors, many universities (especially business schools) have witnessed an 

increasing number of students (and therefore an increase in class size) over the last 

decade (Guder et al., 2011).  At the University of Rhode Island, the most frequently taken 
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freshmen-level mathematics courses (MTH 101:  College Algebra, MTH 107:  Finite 

Mathematics, and MTH 111:  Pre-Calculus) have class sizes of between 44 and 180 

students.  The business mathematics courses at URI (MTH 110: Mathematical 

Foundations for Business Analysis and BUS 111: Introduction to Business Analysis and 

Applications) typically have class sizes of 40-60 students.  However, students who are 

deemed unprepared for these business mathematics courses are strongly encouraged to 

start in MTH 101, which currently accommodates 120-150 students. 

When asked why they fail to use informal assessments, promote inquiry, or 

implement project-based, personalized learning strategies in their classrooms, many 

instructors claim that they have too many students to teach and too much curriculum to 

cover (DeBerard et al., 2004; J. Baglama, personal communication, January 23, 2015).  

Many educators could appreciate that, with over 40 students in a class and multiple 

classes to teach, it would become rather challenging to know each student and understand 

their individual mathematical needs, struggles, and interests.  Even though business 

mathematics (such as BUS 111) class sizes are small in comparison to other gateway 

freshmen mathematics courses at URI and other universities, the lecturers in charge of 

developing and teaching BUS 111 teach four sections of the course each semester.  

Therefore, although each individual class seats 40-60 students, the instructor still sees and 

teaches 160-240 students three times per week. Though I was unable to include class size 

as a variable in my research (each BUS 111 class examined had approximately the same 

number of students, varying only from 44-52 students), I still believe it is extremely 

important to consider when examining student-readiness and student success in college 

mathematics.  

 Research on the impact of class size over the past few decades has yielded mixed 

results (Borden & Burton, 1999; Chapman & Ludlow, 2010; Cuseo, 2007; De Paola, 

Ponzo, & Scoppa, 2013; Feldman, 1984; Gibbs & And, 1994; Gilbert, 1995; Gleason, 

2012; Guder et al., 2011).  While some research indicates class size does not significantly 



 196 

effect student achievement, the majority of this research involving class size has focused 

on elementary and secondary schools, not post-secondary classrooms.  In mathematics 

courses especially, it seems that class size does play a significant role in student 

performance (Chapman & Ludlow, 2010; Gleason, 2012; Guder et al., 2011).  Even if 

class size does not directly impact skill acquisition, it “may affect motivational, 

attitudinal, and higher-level cognitive processes” (Borden & Burton, 1999, p. 3), which 

are significant predictors of overall course grade in business mathematics.  Further, class 

sizes are likely associated with retention and student enjoyment in college (Gleason, 

2012). 

Some research strongly supports a negative relationship between class size and 

student performance in college courses (Chapman & Ludlow, 2010; Cuseo, 2007; De 

Paola et al., 2013; Gibbs & And, 1994; Guder et al., 2011).  In other words, as class size 

increases, student performance tends to decrease.  One study in higher education found 

that, in business classes specifically, students’ GPAs were on average 0.1 points higher in 

small classes (with less than 40 students) than they were in large classes (Guder et al., 

2011).  Another study showed that earning an A grade was less than half as likely in a 

class with over 50 students enrolled (Lindsay & Paton-Saltzberg, 1987).   Mirroring these 

results, a team of researchers revealed that 42.2% of students enrolled in classes with 

fewer than 20 students earned As or Bs, but only 33.6% of students enrolled in classes 

with over 70 students were able to earn those grades (Gibbs & And, 1994).  More 

recently, researchers discovered that adding eight more students to a mathematics class 

led to an average exam grade decrease of 3% (De Paola et al., 2013) and that each 

additional student in a class corresponded to a 1% decrease in the number of students 

who “[agreed] that they attained the skills associated with learning in that class” 

(Chapman & Ludlow, 2010, p. 112). 

Larger class sizes have not only been shown to correlate with lower student 

performance in the course, as described above, but also correlate to lower student 
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performance in subsequent courses (Borden & Burton, 1999; Cuseo, 2007; Gibbs & And, 

1994).  Educational researchers Victor Borden and Kathy Burton (1999) cautioned 

university educators that introductory courses, especially those taken during a student’s 

freshman year, are critical in helping the student decide on both academic and career 

goals.  The researchers discovered that, while class size was not a factor in all discipline 

areas, class size significantly affected student grades in mathematics courses (Borden & 

Burton, 1999).  Specifically, students who were placed in introductory mathematics 

courses according to their major with a class size of less than 30 were more likely to earn 

a higher grade in the course and persist in their major.  This is perhaps due to the fact that 

research dating back to the early 1920s has revealed (and more recent studies continue to 

confirm) that students in smaller classes show “statistically significant differences in 

problem solving, student attitudes to teaching, and knowledge retention” (Gilbert, 1995, 

p. 322).   

Studies also indicate that lower class sizes are strongly correlated with higher 

instructor evaluation scores (Chapman & Ludlow, 2010; Feldman, 1984; Guder et al., 

2011; Perrine & And, 1995).  “Student involvement and personal contact between the 

professor and the students make a significant difference in learning outcomes” (Gilbert, 

1995, p. 320).  However, relationships are more difficult to maintain with larger class 

sizes.  Students in large classes often report feeling uncomfortable asking their instructors 

for help and report worrying that their instructors are unlikely to be able to help them 

because of the number of students in the course (Perrine & And, 1995).  Students in 

larger college classes tend to exert unfavorable attitudes about learning as well (De Paola 

et al., 2013).  They feel they have fewer opportunities to talk to their instructors or ask 

questions during class, which often leads them to generate negative attitudes towards 

their instructors or towards college in general. Research also suggests that students in 

larger classes feel anonymous and less engaged with the class, and therefore are more 

likely to not attend the course (Gleason, 2012; Perrine & And, 1995).  Since both course 
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attendance and students’ anxiety levels/attitudes towards mathematics were found to be 

significant predictors of success in business mathematics in this research, reducing class 

sizes might help promote more successful behaviors. 

In 2007, educational researcher Joe Cuseo analyzed class size and its effect on 

students, faculty, learning, and teaching.  He found seven core problems with increasing 

class size when it came to student learning: 

1. Professors of larger classes were more likely to use lecture as their sole 

method of instruction. 

2. There was “less active student involvement in the learning process” 

(Cuseo, 2007, p. 6). 

3. Less feedback from professors as well as less student-professor 

interactions both within and outside of the classroom occurred in larger 

classes. 

4. Students were engaging in more lower-level thinking processes rather than 

higher-level thinking. 

5. Larger classes had “reduced breadth and depth of course objectives, 

course assignments, and course-related learning strategies used by 

students outside the classroom” (Cuseo, 2007, p. 6). 

6. Lower student grades and lower academic advancement/learning occurred 

in larger sections. 

7. Students in larger classes reported lower course satisfaction ratings as well 

as lower ratings of their instructors (Cuseo, 2007). 

Because student emotions towards mathematics (especially their mathematical 

confidence and anxiety levels in mathematics) help predict success in business 

mathematics courses according to the results of this research, more personalized learning 

environments would allow instructors and advisors to more easily and effectively address 

these issues.  First, advisors could discuss the importance of attitudes towards 
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mathematics and mathematical anxiety with students and suggest meeting more 

frequently with their instructors (which would be possible with smaller class sizes) to 

help them gain confidence and lower their anxiety levels. Similarly, since course 

attendance predicts success, smaller class sizes would make it easier for an instructor to 

get to know all of her students and therefore be able to recognize and reach out when a 

student is missing.  This would arguably allow each student to feel noticed and missed, 

and therefore may discourage future absences.  Research supports the fact that “students 

who become adequately integrated into the social and academic systems of their college 

are most likely to develop and maintain a strong commitment to attaining a college 

degree.  Part of the integration process is developing relationships with college faculty” 

(Perrine & And, 1995, p. 42).  Thus, in order to personalize learning and maximize 

opportunities for success, it would be ideal to start by lowering class sizes in college 

mathematics courses, specifically those for business majors.   

This policy change may initially be expensive to implement, as smaller classes 

require more instructors and a greater number of available classrooms.  However, the 

choice must be to pay now (financially) in order to increase student learning and thus 

avoid paying later (socially and culturally) with a society of math-phobic leaders and 

citizens (Chapman & Ludlow, 2010).  Once class sizes are lowered, instructors may be 

able to approach new student-centric teaching strategies with a more open mind through a 

variety of resources and professional development opportunities (McDuffie & Graeber, 

2003).   

Research reveals that instructional practices and curricular choices in college 

business and mathematics courses often have an even greater impact on student learning 

than class size, and thus, these practices must also be considered (Gilbert, 1995).  Not 

surprisingly, what seems to matter even more than the size of the class is what is 

happening during the class. 

Instruction and Curriculum Practices in College Business Mathematics 
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Based on the results of this study, coupled with the existing literature available, it 

seems that both the college business mathematics curriculum and the corresponding 

curriculum delivery procedures are currently inadequate.  Many researchers are quick to 

blame college instructors (Anderson, 1967).  Their general lack of pedagogical expertise 

was discussed in detail in chapter three.  However, college instructors cannot be the only 

ones to blame.  Many want to be better educators, but most do not know how to improve.  

Without policies to encourage good teaching practices, many professors do not even 

realize the flaws in their current instructional methods (McDuffie & Graeber, 2003).  Few 

receive pedagogical support and the promotional, tenure focus remains on research 

publications and conference presentations.  College instructors are full-time professionals 

and “if we assume that the essence of professionalism is professional action, then 

teaching actions should be based on the best available knowledge and should be in the 

best interests of clients” (Munby et al., 2001, p. 899).  In the case of college mathematics 

and business education, the clients are the students and they are best served when they are 

placed in the center of their educational experiences in a safe, encouraging environment 

that is adaptable based on their needs and interests (Dewey, 1938).  However, “the 

foundation of systemic change is individual change” (Gess-Newsome et al., 2003, p. 

763).  Therefore, in implementing policy changes in higher education, one must focus on 

helping college business mathematics instructors recognize and reflect on the problems in 

the current curriculum and delivery methods and introduce a more student-centered, 

constructivist framework. 

“Decision to change within an organization is influenced by (a) cues from the 

organizational environment, and (b) individual beliefs, attitudes, goals, and knowledge 

acquired from experience” (Richardson, 1990, p. 11).  Therefore, in order for meaningful 

change to take place in higher education, instructors must first develop a concern 

regarding their current student learning outcomes and feel supported by their institution 

to be reflective practitioners and change their teaching practices (Gess-Newsome et al., 
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2003; McDuffie & Graeber, 2003; Richardson, 1990; Schön, 1983).  Instructors must 

recognize that what is currently happening in many college business mathematics 

classrooms is not working for the majority of students, and therefore significant change is 

necessary.  A failure rate of over 17%, as was found this semester in BUS 111, is too 

high and leaves too many students behind.  Over 35% of the students taking BUS 111 

over the Fall 2015 semester failed to reach the minimum “C” letter grade for successful 

completion of the course and will likely need to retake the class or may choose to switch 

their major.  If instructors fail to see the problems with the current business mathematics 

curriculum or instructional methods, then, “they [will] have little motivation to engage in 

reform and [will] have little investment in making reform work” (Gess-Newsome et al., 

2003, p. 738).  Therefore, an important first step in implementing change at the 

institutional level must be to help instructors identify the current problems in both the 

curriculum and their teaching practices, and then show them that positive change is 

possible and necessary.  This could be accomplished through an initial presentation to 

faculty revealing the overall lack of student learning and success in mathematics and 

providing information on low student retention in STEM and business fields.  

Additionally, change could be initiated by presenting multiple regression and 

correlational models related to student success, such as those revealed in chapter five, 

coupled with ongoing professional development, departmental support, and institutional 

recognition of effective instructional practices. 

College instructors can no longer use a “one-size-fits-all” approach to 

mathematics instruction and ignore whether the course they are teaching is intended for 

mathematics majors or business majors or students with diverse interests.  Instead, 

students’ prior knowledge, experiences, and future career goals must guide the 

curriculum, assignments, and instructional practices.  The new curriculum in business 

mathematics courses must be flexibly designed so that as each semester moves forward, 

changes can be made based on the specific needs, attitudes, interests, anxiety levels, and 
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experiences of the incoming group of students (Bransford, 2000; Hiebert & Grouws, 

2007). Classrooms should provide opportunities for continuous dialogue, questioning, 

and frequent reflection to potentially decrease mathematical anxiety and develop more 

favorable attitudes towards mathematics.  Mathematics educators James Hiebert and 

Douglas Grouws suggest the following practices in teaching high school students 

mathematical concepts: 

… [discuss] the mathematical meaning underlying procedures, [ask] questions 

about how different solution strategies are similar to and different from each 

other, [and consider] the ways in which mathematical problems build on each 

other or are special (or general) cases of each other attending to the 

relationships among mathematical ideas. (Hiebert & Grouws, 2007, p. 383) 

Strategies like these, which have already been found to be successful for high school 

students, should be incorporated into college classrooms as well and evaluated for 

success. 

In addition to adapting successful strategies such as those presented above, 

business mathematics instructors should be encouraged to reflect on, discuss, and revise 

their teaching practices as they move forward (Schön, 1983).  To promote this 

professional reflection, instructors should also have clear objectives for students to 

achieve.  They must help students develop and achieve their personal goals, which can 

focus on problem solving and critical thinking, rather than just presenting students with a 

general list of content or skills on a syllabus that they hope to cover over the semester.  

Educators should not “want to cover a subject; [they should] want to uncover it” by 

letting their students construct their own meaning and develop a deep, personal 

understanding about mathematics (Hawkins, 2000, p. 79 as cited in Duckworth, 2006, p. 

7).  Some of these new, broadly stated course objectives might align better with the 

Common Core State Standards on Mathematical Practice (Common Core State Standards 

Initiative, 2015) and could include things such as: 
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• Students will be able to solve authentic business-based problems using a 

variety of mathematical strategies. 

• Students will develop and be able to apply their own problem solving 

techniques to business situations. 

• Students will construct and critique mathematical arguments (Common Core 

State Standards Initiative, 2015). 

• Students will be able to approach new problems with confidence in their 

mathematical abilities and mathematical literacy and will persevere in solving 

these problems (Common Core State Standards Initiative, 2015). 

• Students will develop number sense and be able to use various estimation 

strategies in business scenarios. 

• Students will understand the value and relevance of mathematics in the 

business world as they investigate the mathematics that exists in their future 

careers. 

Other course objectives should be created with student involvement during the first week 

of the course to ensure that student goals, not just the instructor’s goals, are being 

addressed.  These goals could be personalized for each student, and may include things 

such as: 

• I will approach mathematics problems in business with more confidence and 

less fear.  My instructor can help me reach this goal by understanding my 

current mathematical anxiety and providing practice problems and modeling 

strategies during class. 

• I will collaborate with my classmates each week to master new material.  My 

instructor can help me reach this goal by assigning group projects or allowing 

collaboration during class. 

• I will study small chunks of information over a longer period of time to help 
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better understand the material.   

• I will visit my professor when I have questions.  My instructor can help me 

reach this goal by holding regular office hours and welcoming questions 

regardless of the skill level. 

• I will relate the course material to personal experiences in my life.  My 

instructor can help me reach this goal by modeling this technique and 

encouraging reflection through class assignments. 

These collaborative objectives could help alleviate mathematical anxiety and increase 

student interest and engagement in the course, encouraging students to attend class 

regularly.  Additionally, it allows the instructor to understand students’ current 

relationships with the subject matter. 

In order to reach these personalized goals, college business mathematics 

instructors might introduce constructivist, problem-based, student-centered classrooms, 

like those described in chapter three’s review of the literature (Cobb, 2005; Fosnot & 

Perry, 2005; Von Glasersfeld, 2005; Vygotsky, 1978).  Even when instructors have the 

best intentions to implement a lesson and transmit knowledge into their students’ minds, 

it is “the learners’ generation of meaning from the teaching that influences achievement” 

(Wittrock, 1986, p. 311).  Thus, students must be provided with opportunities to reflect 

on their experiences and construct their own knowledge. Instructors must strongly 

diminish the current focus on lecture and teacher-centered practices and instead 

encourage student collaboration and discourse.  Together with students, they must 

consistently evaluate their initial goals to reflect on possible classroom changes. 

By building a classroom community that revolves around dialogue/discourse, 

understanding, and support, college educators can widen the learning possibilities for all 

students (Fosnot & Perry, 2005; Vygotsky, 1978).   In designing and implementing a new 

curriculum and learning environment, college mathematics instructors must encourage 

student communication and serve as facilitators to student learning; rather than all-
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knowing providers of decontextualized information.  Researcher Ann Brown (1987) 

argues that the role of the instructor is to “tailor the information to the [student’s] existing 

level of understanding... activate relevant background knowledge,” and help students 

monitor their growing knowledge base through support and recognition (p. 102). 

Learning often occurs with, and is facilitated by, the support of others (Cobb, 2005; 

Fosnot & Perry, 2005; Vygotsky, 1978).  Thus, “social settings, where the [student] 

interacts with experts in a problem solving domain, are settings where a great deal of 

learning occurs” (Brown, 1987, p. 100).  Business mathematics instructors can therefore 

enhance learning and increase students’ desire to attend class by providing opportunities 

for students to work collaboratively with their peers and discuss strategies for 

approaching and solving new problems. 

To accomplish this collaborative goal and provide more authentic learning 

situations, college instructors should help students realize that problem solving is not 

unique to business mathematics classes:  it is important to be an efficient problem solver 

in future careers and within students’ personal lives.  Limiting the importance of 

mathematics to the classroom can immediately reinforce students’ attitudes of believing 

that mathematics is not applicable to their lives (Cobb, 2005; McDuffie & Graeber, 

2003).  In order to ensure a widening frame about problem solving, instructors need to 

work to increase the comfort level with which their students approach new problems and 

their persistence in solving these problems, as well as increasing their confidence to be 

able to apply their problem solving skills to diverse contexts.  One way this could 

successfully be accomplished would be by offering students more open-ended projects 

based on realistic problems that arise in business settings (Kesici & Erdogan, 2009).   

These projects could have a wide variety of “correct” solutions and could foster 

mathematical dialogue and applicability.  Constructive, problem-based activities 

encourage students to take as many routes as possible when they are solving any given 

problem without fear of penalty, so that they may utilize each of their ideas, discover 
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where each route may lead them, and remember those attempts in future situations and 

learn which solution paths are more efficient in a given context (Cobb, 2005; Von 

Glasersfeld, 2005).  

Dr. Carol Blaszczynski (2001), a business mathematics educator at California 

State University, suggests that business students need their instructors to serve as role 

models in learning mathematics.  She emphasizes that instructors need to show students 

that they themselves are excited about understanding the mathematical applications in 

real dilemmas, are enthusiastic about approaching new problems, and can persevere in 

solving them.  Specifically, she suggests that business mathematics instructors should 

exhibit modeling behaviors including “estimating answers before solving a problem, 

reading a problem several times before attempting to solve it, drawing diagrams or charts 

to make a problem more understandable, and making errors and correcting them” 

(Blaszczynski, 2001, p. 4).  Each of these instructional behaviors can help lead students 

to value the importance of mathematics, recognize that genuine problem-solving takes 

time and sometimes struggle, and approach new problems without the anxiety or fear of 

making a mistake. 

Business mathematics instructors should also help their students build personal 

connections between what they are experiencing in class and what they are experiencing 

in their daily lives. Communicating about mathematics in business courses can help 

students appreciate its importance.  Further, communication allows students to recognize 

that getting the right answer is only half as important as being able to discuss what that 

answer means (Blaszczynski, 2001).  I have many students who are able to calculate the 

correct mathematical solutions but struggle to articulate what they can do with that 

knowledge in a business context.  Similarly, some of my students can clearly convey how 

to approach a business scenario but struggle to perform the necessary mathematics.  

These students could learn a great deal from each other and excel as a team:  building on 

each others’ strengths, teaching each other new skills, and devoting time to understanding 
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and discussing the business mathematics concepts.  “Engaging in writing, reading, 

listening, or speaking about math reinforces vocabulary, concepts, and procedures and 

empowers students with the necessary associations to make the math meaningful” 

(Blaszczynski, 2001, p. 3).   

By placing students at the center of learning experiences, college instructors can 

encourage students to construct a deeper understanding of and appreciation for 

mathematics.  When incorporating these ideas, a new vision for a college business 

mathematics course comes into view:  one in which students use problem-solving 

strategies to collaboratively tackle realistic, business-based dilemmas, persevere in 

solving these problems, and develop an understanding of the applicability and usefulness 

of mathematics. Through project-based learning, constructivism, and an appreciation for 

student attitudes and perceptions, college business mathematics educators could show 

students the importance of problem solving and diminish the current negative view and 

anxiety that many students hold about mathematics. 

Many of the reform efforts in education often involve elementary and secondary 

levels, but these reforms must not ignore the pedagogical issues that exist in higher 

education.  New policies must be put in place to strongly diminish, or at least discourage, 

the lecture-based, teacher-centered models currently being used in college mathematics 

and business mathematics courses.  In most cases, college is the final formal schooling 

experience a person encounters before entering their career.  Thus, faculty members in 

institutions of higher education must change the existing teaching and learning practices 

to ensure adults are entering the community prepared to approach and address the use of 

mathematics in practical and authentic situations that they may encounter.  Specifically, 

because of the results discovered in chapter five, instructors should work to help students:  

(1) realize the importance of devoting time to mathematics, (2) decrease their 

mathematical anxiety, and (3) promote confidence and more favorable attitudes towards 

mathematics, as described in further detail below. 
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Increasing Time Devoted to Mathematics 

In my multiple regression analysis, it was discovered that the number of classes a 

student missed over the semester as well as the number of hours a student spent on 

mathematics outside of class each week were useful predictors of student achievement in 

a business mathematics course.  Thus, further departmental actions could be taken in 

order to help promote student success.  For example, in addition to considering the 

implementation of some of the recommendations above, instructors might consider taking 

attendance in the course to encourage students to attend, while letting students know that 

those who come to class regularly tend to earn higher grades, as supported by my 

findings.  Instructors could also start requiring more thought-provoking assignments, 

explaining that solving problems takes time, and encouraging independent practice and 

collaborative thinking both inside and outside of the classroom (Barnes et al., 2004).   

Most importantly, business mathematics instructors should ensure class time is 

motivating and meaningful to students so that students will want to attend, regardless of 

external incentives.  By offering interesting and stimulating course material that 

encourages peer interaction and personal exploration, as described above, students will 

more likely be willing to devote time and effort to the course both during and outside of 

class (Kesici & Erdogan, 2009). The tasks that instructors assign should be meaningful 

and spark student interest and curiosity about problem solving (Rittenhouse, 1998).  This 

way, students will likely be more inspired to devote time to the assignments, connect the 

information to personal experiences, and construct their own knowledge based on the 

tasks provided. 

Decreasing Anxiety and Promoting Favorable Attitudes Towards Mathematics 

Because high levels of mathematical anxiety tend to predict lower course grades 

and more favorable attitudes towards mathematics tend to predict higher course grades, 

instructors and advisors can make students aware of these connections and provide 

strategies to help them address stress, increase interest, and lower anxiety in business 
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mathematics. Furthermore, in a student-centered classroom, instructors could strongly 

diminish the lecturing model and introduce student voice and peer interactions to support 

learning and lower anxiety (Davis & Shih, 2007; Kesici & Erdogan, 2004).  By focusing 

on teaching students rather than just teaching mathematics, instructors could help 

students see the relevance of mathematics in their lives and feel confident approaching 

new problems in business scenarios. With a new goal of increasing confidence and 

getting students interested in mathematics, instructors may consider options such as 

activating prior knowledge in the classroom or displaying the value of mathematics in the 

world through inquiry learning and exploration (Levy & Petrulis, 2012; Ormrod, 2011). 

Both of these student-centric strategies were described in detail in chapter three’s review 

of the literature.  College instructors must be held at least partially accountable for the 

success of their students.  In the following section, I describe a policy recommendation 

that could help further promote these positive behaviors amongst instructors. 

Implementing Instructor Evaluations 

 In elementary and secondary education, there are various sets of standards (such 

as the Common Core State Standards) that educators are expected to follow as they teach 

(Darling-Hammond, 2010).  However, in higher education, instructors have great 

freedom in both what and how they decide to teach.  Perceived instructor effectiveness 

(one of the variables investigated in this research) was significantly correlated with 

student anxiety (r = -0.320; p = 0.000), attitudes towards mathematics (r = 0.312; p = 

0.000), and overall student achievement in BUS 111 (r = 0.293; p = 0.000).  Under the 

current system, college mathematics and business instructors have very little 

accountability when it comes to student achievement in their courses (Davis & Shih, 

2007).  At the same time, their teaching effectiveness is likely to impact student success 

and learning opportunities.  In this research, for example, significant differences existed 

in student grades based on their assigned instructor.  Different instructors had different 

success rates and different variables that were significant in predicting their students’ 
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final grades and confidence levels in BUS 111.  When students trust their instructor’s 

ability to effectually present course material, they tend to feel more capable of being 

successful in the course (Bahr, 2012; Corbishley & Truxaw, 2010; Hiebert & Grouws, 

2007).  Therefore, college instructors should be evaluated and held accountable for the 

results of their teaching practices, not just their research publications. 

Even with autonomy in instructional decisions and curriculum design, many 

mathematics and business mathematics instructors admit to teaching courses the same 

way they have been taught for years (McDuffie & Graeber, 2003).  Instructors believe 

that they must cover certain content because it is listed in the course catalog or because 

they assume students will need it in subsequent courses.  However, in general, many 

students view mathematics courses as extremely repetitive and claim they often find 

themselves being re-taught material they are already familiar with (Hall & Ponton, 2005).  

In business classes at URI, for example, students report learning time value of money 

computations and procedures in multiple classes.  Why do college instructors feel so 

rushed to cover content that students will likely be exposed to again in subsequent 

mathematics or business mathematics courses?  New policies must be executed to expose 

these overlaps and enhance course content and design.  Unfortunately, professors are very 

independent educators and rarely discuss course content with their colleagues (Ballard & 

Johnson, 2007).  College instructors need to spend time discussing the various courses 

offered by the department to understand what topics are actually being addressed and 

what prerequisite skills students are expected to have before entering each of those 

courses.  To address courses with no specific subsequent course, designed to meet 

general education requirements, business mathematics instructors should also be given 

opportunities to communicate with faculty from other specialty fields (Marketing, 

Management, Finance, Accounting, Supply Chain Management, etc.) in order to 

determine how to best prepare students for each specialty (Ballard & Johnson, 2007). 

 Unlike K-12 educators, college professors are rarely formally evaluated based on 
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their teaching practices or student success rates.  Currently at the University of Rhode 

Island, similar to other universities across the nation, students are asked to evaluate their 

professors at the end of the semester (Barnes et al., 2004; Feldman, 1984; Guder et al., 

2011; Reisel et al., 2012).  This summative feedback is collected through an anonymous 

survey and results are compiled into averages.  Professors receive the results of this data 

one or two semesters after the surveys have been submitted.  Receiving feedback about a 

class long after that class has ended is not sufficient.  I propose a new policy be 

implemented, which involves instructors asking students for constructive feedback at 

least three times during the course of the semester – either formally or informally.  As the 

course progresses, students can anonymously let the instructor know what they are 

enjoying, what they need, what they already know, and what could be improved.  

Instructors can make changes as they move forward, rather than waiting until the course 

is over to decide whether to make changes for a new group of students, who will likely 

have different needs and learning styles than those who completed the evaluation surveys 

the previous year. 

 In addition, teaching should become a more significant responsibility for college 

mathematics and business mathematics instructors in terms of career advancement and 

job stability.  I believe that department members who are considered to be leaders in 

pedagogy should be encouraged to help evaluate peer instructors at least once every 1-2 

years on their teaching practices.  Faculty members who are known for their effective 

teaching can offer suggestions and share best practices and new ideas with their 

colleagues.  Instructors can also reflect and set goals for improving their teaching 

methods and can evaluate themselves after each semester passes with the support of 

another faculty member or the department chairperson (Schön, 1983).  Past students and 

business major alumni could discuss what most benefitted them in future classes and 

occupations and what they wished would have been explored more deeply.  When tenure 

meetings come up, department members should spend a great amount of time considering 
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these teaching evaluations (both from students and from fellow faculty members) when 

making promotional decisions (McDuffie & Graeber, 2003).  Instructors should spend 

time reflecting on their instruction and delivery and searching for ways to improve their 

practice as professional educators (Schön, 1983).  These evaluations will demonstrate to 

professors that their teaching, not just their research and publications, is an extremely 

important and influential component of their careers.   

 Effective teaching practices should also be recognized at the university level.  

Often, successful teachers at the university are recognized during an annual meeting or 

through a newsletter, but greater recognition may influence greater change (Bolman & 

Deal, 2008; McDuffie & Graeber, 2003; Richardson, 1990).  For example, perhaps the 

top five pedagogues each year could be rewarded with reduced research requirements to 

devote more time to teaching, mentoring, and inspiring other faculty to improve 

instructional practices.  Furthermore, conducting research on teaching business 

mathematics courses in college should be recognized as equally rigorous and appropriate 

when considering promotions and publications.  Journals that include articles on teaching 

and college curricular designs should be included on the list of acceptable research 

journals for college instructors, which is not currently the case at many institutions 

(McDuffie & Graeber, 2003).  If we want to increase students’ mathematical abilities and 

confidence in business mathematics while simultaneously increasing the teaching 

effectiveness of instructors, then I believe the university culture, as a whole, must shift.  

We must move from only an appreciation of being able to perform new mathematical or 

business-based research to an appreciation of being able to implement, discuss, and 

analyze successful teaching practices in college classrooms.  By enforcing new policies 

that assess and promote instructor effectiveness at the college level, I believe such a 

cultural shift can start to occur. 

Recognizing Potential Obstacles/Weaknesses in Instructor Evaluations 

 Instructor independence is strongly valued by instructors in higher education 
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(Johnson, 2007; McDuffie & Graeber, 2003).  Many instructors enjoy the freedom and 

autonomy that they have grown accustomed to in their careers and they have an existing 

understanding of what is expected of them in terms of instruction.  Since the current 

system seems to place more value on innovative research and frequent publications than 

on successful teaching strategies, instructors often focus their attention on research over 

teaching as well.  Therefore, by evaluating instructors on their teaching practices, 

universities run the risk of initially meeting great resistance.  To help with this necessary 

transition, professional development opportunities that focus on pedagogical strategies 

and classroom resources would be necessary.   

Further, in implementing this change, instructors may initially feel as though their 

autonomy is at risk by being told they may be subjected to more frequent and formal 

evaluation procedures in their classrooms.  As they consider themselves to be expert 

mathematicians or business/financial gurus, they may feel devalued or belittled when 

being observed by their department chair or fellow faculty members (Bransford, 2000).  

Part of my current contract highlights my professional freedom in my teaching decisions.  

However, if no changes are implemented, the risk of students failing to learn, caused by 

having instructors who are not 100% committed to or capable of teaching, is far worse.  

Thus, instructors must understand that student learning is the primary objective.  

Classroom observations and teaching evaluations will help ensure this goal is being 

addressed and will also help the department understand what resources need to be 

provided to faculty members to help them achieve this goal. 

Changing Placement Exam Procedures 

This multiple regression model also included a variety of student test scores, 

many of which other universities have found to be correlated with student achievement 

(Reisel, et al., 2012; Smith & Schumacher, 2005).  For example, the current placement 

test designed and implemented by the University of Rhode Island’s Mathematics 

Department was used as an independent variable in my model.  Since I found that this 
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test was a strong predictor of student mathematics achievement in a business mathematics 

course, perhaps a new process needs to be designed and implemented to better inform 

and prepare students for this test so that a higher percentage of students take the 

placement exam and consider the corresponding recommendations made.  Additionally, I 

found that the current placement test and high school GPA were strong predictors of BUS 

111 success, and explained a significant amount of the variance in student achievement, 

but adding in mathematics SAT score generally did not explain significantly more of the 

variance.  Thus, perhaps a modified, required version of the placement test and high 

school GPAs are sufficient in accepting students into the program and SAT scores are not 

a necessary component to examine for admission or placement.  The College of Business 

at URI may want to reconsider their specific admissions requirements to better align with 

these indicators, once a more appropriate version of the placement procedure is 

implemented.  

Many recent studies have investigated the use of placement tests, SAT scores, and 

high school GPAs for college mathematics courses, as described in the review of 

literature in chapter three (Bisk et al., 2013; Doubleday, 2013; Foley-Peres & Poirier, 

2008; Reisel et al., 2012; Smith & Schumacher, 2005).  Most research has found that 

using a proctored, enforced placement test helps accurately place students into the 

mathematics course for which they are best prepared and in which they are most likely to 

be successful (Bisk et al., 2013; Foley-Peres & Poirier, 2008; Reisel et al., 2012; Smith & 

Schumacher, 2005).  URI’s placement exam must accurately reflect the expectations of 

the prerequisite skills a student is expected to need in each mathematics course, including 

BUS 111.  Therefore, as courses change, so should the placement test (Bisk et al., 2013). 

Students should be made aware of these expectations and understand the purpose of the 

placement exam as well as the implications of the results.  A policy needs to be 

implemented to explain the following information to incoming students: what they are 

expected to know and be able to do in college business mathematics courses at URI, why 
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the placement exam is used and enforced, and how strongly the results typically correlate 

with mathematics-based course achievement.  Currently, the business department is not 

involved in the development or implementation of the mathematics placement exam.  The 

current placement procedures, while seemingly effective according to the mathematics 

department, are designed for mathematics courses, which differ slightly from business 

mathematics courses, where students are expected to have more problem solving and 

mathematical literacy skills.   

As of the Summer of 2015, URI mathematics department claimed that they would 

require all incoming freshmen to take a proctored placement exam during their summer 

orientation in order to determine which mathematics course would suit them best.  

However, in the College of Business Administration, advisors sat down with each student 

and reevaluated the student’s placement based on their high school coursework and which 

course the student wanted/needed to take (J. Baglama & K. Conlon, personal 

communication, October 7, 2015).  The placement score was examined, but students often 

admitted to not taking the placement exam seriously or just needing a quick refresher on 

some material, and thus chose more advanced courses despite their scores.  Students may 

also take the placement exam multiple times and only their highest score will be recorded 

and sent to the university.  Not surprisingly, not a single student in BUS 111 retook the 

placement exam to try to earn a higher score, likely because they knew they did not have to 

in order to register for the course they wanted (T. Bella, personal communication, October 

13, 2015). Further, similar to other universities, without a policy in place that thoroughly 

describes the details of this exam and its results to new students, students often end up 

choosing a business mathematics course other than the one into which they were placed 

according to the exam (Bisk et al., 2013; Jacobson, 2006; Reisel et al., 2012).    

For the Fall 2015 semester, less than 12% of all of the students enrolled in BUS 111 

(including all students enrolled in the course, not just the participants of this study) actually 

placed into the BUS 111 course according to the current procedures; 65% placed in a 
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lower-level course, and 23% of the students never took the placement exam.  Those who 

did not take the placement exam instead worked with a business advisor to choose their 

courses based on their previous experiences and test scores.  However, even though 

placement scores were significant predictors of BUS 111 course grade and there was a 

significant correlation between students’ placement scores and their final course averages 

(r = 0.386; p = 0.000), it is important to note that placing into group D (the highest group, 

which is currently the placement requirement for BUS 111) is likely not necessary for this 

course.  Perhaps placing into group B/C is sufficient for this course, as the average grade 

for students placing into this group or a higher group was above an 82%, which 

corresponds to a successful completion grade of a B- in BUS 111. 

Under the current procedures, upon finishing the mathematics placement exam for 

the University of Rhode Island, a recommendation is made as to which mathematics course 

the student should take.  This recommendation is based on course expectations and 

previous student success in that course.  However, again, the student is currently under no 

obligation to follow this recommendation for business mathematics courses.  If the student 

is placed into a course that is lower than what they feel is appropriate, for example, they 

can choose to take a more challenging course and are often not successful.  Rather than 

taking an extra semester to enroll in an introductory course, many times students take and 

fail the higher-level course.  This causes those students to fall behind in their programs of 

study while they either retake the course they failed or take the originally recommended 

preliminary course, and then retake the higher-level course at a later time.  Falling behind 

in their program leads students to abandon the business field, or, in some cases, leave the 

university entirely (Bisk et al., 2013; P. Boyd, personal communication, October 16, 2015; 

Reisel et al., 2012).  Without changing this current placement exam policy, I do not believe 

URI can anticipate higher success rates in business mathematics courses over the next few 

years. 

Therefore, I would propose that all incoming business students at URI be required 
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to take a proctored version of the mathematics placement exam during their two-day 

summer orientation.  The mathematics department has tested their current exam, consulted 

students and mathematics faculty members, and used past student results to create what 

they believe to be a valid measure of future student achievement.  However, because 

business mathematics classes have different curriculum goals, collaboration on new 

questions specifically designed for business students needs to occur.  To help ensure 

students enroll in a business mathematics course that is best suited for their needs, in order 

to subsequently help them find success in business mathematics at URI, it is my opinion 

that a business version of this placement exam needs to be created and tested, and then 

corresponding placement decisions need to be enforced.   

Additionally, BUS 111 instructors and/or advisors should meet with students 

individually after each of the course exams to discuss their grades and learning goals and 

make possible suggestions for moving forward.  For example, as discussed in chapter five, 

only 35% of students who failed the first exam ended up passing the course.  Less than 

15% of students who failed exam two completed the course successfully, and no students 

(at least during the Fall 2015 semester) were able to successfully complete the course after 

failing both of the first two exams.  Currently, no support systems or additional 

instructional methods are in place for these students.  Students need to be made aware of 

these statistics so that they can make informed decisions about their future in business 

mathematics courses.  They need to know that they may have to significantly change their 

current study habits, discuss their struggles with their instructor, or see how the instructor 

may be able to help better address their learning goals.  Alternatively, they may decide that 

it will be better for them to drop the course for the semester and enroll in a more 

foundational course, such as MTH 110, to begin. 

Currently, much time and energy is being devoted to “teaching to the middle” in 

freshmen business mathematics classes at URI (A. Armstrong and a small group of 

graduate teaching assistants, personal communication, September, 2014).  Because students 
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enter the courses at such varying skill levels (some appropriately placed, others taking the 

course as an “easy A”, and still others taking the course despite being placed into a lower-

level course), the range of student abilities is widespread.  Even the most expert educators 

with experience evaluating student needs and differentiating instruction might struggle with 

such a heterogeneous group of students (McDuffie & Graeber, 2003; Rittenhouse, 1998).  

College mathematics instructors are typically far from expert educators and thus often do 

not know how to handle this situation effectively to help all students (McDuffie & Graeber, 

2003).  Therefore, many instructors generally end up failing a high percentage of students 

who either could not keep up with the material or were bored with the material presented in 

their course. 

Under the current policies in the department, neither the instructors nor the students 

seem to be satisfied with the placement procedures at URI.  Many freshmen who fail their 

first business mathematics class complain to the department about not enforcing and better 

explaining their placement exam score.  Once all students are taking an exam best suited 

for their career goals under similar conditions (with accommodations available as needed), 

the mathematics and business departments can concentrate on ensuring the exam is placing 

students into the right courses.  Prerequisites can be reevaluated and students can be made 

aware of the purpose and significance of the exam.  Further, and more importantly, the 

department can then focus their energy on redesigning the curriculum of these courses 

based on student needs, which is where their attention should be in order to maximize the 

learning opportunities for all students. 

One fear at some universities, including URI, is that students might resent being 

forced into a certain mathematics course from the results of a single placement exam and 

thus choose to attend a different university (Jacobson, 2006).  Many university staff 

members believe orientation should be a time to get students excited about joining the 

university, rather than scaring students away with an exam.  While I agree that orientation 

should be fun, we are not doing students any favors by enrolling them in a mathematics 
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course that they will struggle in or fail due to their lack of prerequisite knowledge.  The 

short (generally 45 minutes or less) placement exam does not take a great amount of time 

away from the other activities of orientation, and part of introducing students to the 

university should be introducing them to the academic requirements and procedures in 

place designed to help them self-assess and succeed (Bisk et al., 2013; Reisel et al., 2012).  

URI should be sending students the message that they want each of their students to be 

successful and get their freshmen year off to a good start by taking mathematics courses for 

which they are prepared.  Examining the results and questions missed on this enforced 

placement exam would give instructors an opportunity to enhance their student-readiness as 

they gain a better understanding of the overall abilities and struggles of the students in their 

course. 

In order to increase opportunities for student learning and success in college 

mathematics courses, I believe significant policy changes are necessary.  First, a general 

shift in both language and focus needs to occur to equally distribute the responsibility of 

readiness for college:  it is not only the new college student who needs to prepare for the 

university, but also the university that must prepare for the incoming students.  Second, 

by enforcing a valid, reliable placement test, students can be confident that they are 

placed into the business mathematics course for which they are prepared and in which 

they can be successful.  This will ensure instructors have more opportunities to 

appropriately challenge their students and enhance learning activities.  It will also allow 

instructors to focus on the curriculum and instruction without the excuse of having 

inappropriately placed students.  Further, by lowering class size, changing the curriculum 

to a more personalized, engaging, student-centered approach, and implementing formal 

teaching evaluations of instructors, teaching and learning can become the top priority at 

the university.  While instructors’ research and publications are important, student 

learning should be the number one goal.   
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There are some universities working to enhance student success, especially in 

mathematics-based courses.  With the increasing number of students in need of remedial 

education especially, reform efforts to prepare these students have been implemented 

across the nation.  In the next section, I examine some of these trends and their purpose 

and success in helping students. 

Current Reform Efforts Implemented to Promote Readiness 

Approximately one in every three college freshmen is found to be in need of a 

remedial/developmental mathematics course, which often does not count for college 

credit, as described in chapter three (Davis & Shih, 2007; Jacobson, 2006).   In the 

business department at URI, students in need of remedial help (about 50% of incoming 

freshmen) are encouraged to start their coursework in either MTH 101 (Introduction to 

College Algebra) or MTH 110 (Mathematical Foundations for Business Analysis), rather 

than BUS 111.  However, BUS 111 is the foundational mathematics course required for 

continuation in a College of Business degree program at URI.   

Nearly all colleges and universities today face issues regarding college-readiness 

to some degree (Belfield & Crosta, 2012; Bisk et al., 2013; Reisel et al., 2012; 

Zelkowski, 2011).  As readiness has historically been a challenge for universities, rather 

than search for reform efforts to eliminate remedial education or use remedial courses to 

“weed out” unprepared students, university administrators and policy makers in higher 

education should focus their attention on building new reforms to embrace this challenge 

and offer support for students at all readiness levels, which many have started to do.  

“From a public policy standpoint, it makes little sense to promote greater college access 

if students are failing once they get there.  Figuring out how to boost college completion 

is the challenge” (Brock, 2010, p. 115).  Many universities have implemented new 

policies and programs to increase students’ opportunities for success, especially those 

students considered unprepared for college-level work. Below, I summarize and analyze 

some of the best improvement programs intended for this purpose: (1) an attempt to 
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bridge the gap between high school and college; (2) providing students with on-campus 

review prior to enrollment; and (3) offering development mathematics courses at an 

alternate pace. 

Bridging the Gap Between High School and College 

A key problem that arises when discussing college readiness tends to be the vast 

differences that exist between a student’s K-12 experience and their experiences in higher 

education.  Unlike other transitions throughout a student’s life, the transition from high 

school to college requires them to undergo many of the most challenging changes they 

may ever face, all within an extremely short period of time, as highlighted in chapter 

three. For decades, high school teachers and college professors have blamed each other 

for students’ lack of academic readiness, or worse:  they start to blame the individual 

students. Instructors at different levels often struggle to agree on the true purpose of 

mathematics education and what it means to be ready for college. Thus, bridging the gap 

between high school and college expectations may help better prepare students for 

college and better prepare colleges for students.  To address the specific problem of 

college-readiness, some university officials have realized that communication between 

secondary educators and college instructors needs to occur more regularly (Bilsky, 2011; 

Frost et al., 2009).   

Specifically, after identifying key competencies required for success in their 

higher education programs, some states have developed preparatory programs and 

entrance exams for college, which all students are strongly encouraged to take prior to 

graduating from high school (Bilsky, 2011).  In 2010, Florida created a statewide policy 

to determine the readiness of students who were considering entering any college 

program in the state.  College instructors, secondary educators, and the State Board of 

Education worked together to develop an assessment closely aligned to the Common 

Core College and Career Readiness Standards, entitled the Postsecondary Education 

Readiness Test (PERT) (Bilsky, 2011).  Upon taking this exam and quickly receiving 
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their scores, students were given a detailed description about which areas of mathematics 

need development and they were given opportunities after school to improve those skills 

before entering college.  Unfortunately, this, like many reform efforts, focuses on helping 

students prepare for college, while neglecting the necessary aid faculty members require 

in order to properly prepare for students. 

The initial purpose of this PERT program in Florida was to more personally 

inform students of their readiness and allow them to more purposefully prepare for 

college while still in high school (Bilsky, 2011).  Research on programs such as this one 

reveals that implementing a state-wide readiness procedure could also more accurately 

inform: curricular and instructional needs of students, prerequisite expectations of college 

faculty, and professional development needs of instructors (Bilsky, 2011).  The impact of 

the program thus far has been an overall increase in retention among freshmen in addition 

to a greater number of faculty members reporting college-readiness for advanced 

mathematics courses (Bilsky, 2011).  Further, the program has the potential to inform 

high school practitioners of the competencies desired in higher education and foster 

communication between K-12 educators and instructors in higher education (Bilsky, 

2011; Frost et al., 2009).   

However, a major limitation of this reform effort is that it is specific to colleges 

and universities in Florida (or in whatever other specific state may choose to run such a 

program).  Students residing in Florida during high school who have no interest in 

attending college in-state may find this test unnecessary, as the concepts addressed may 

not be aligned with other universities across the nation.  Further, this assessment does 

little to explain the expectations in college-level courses other than some of the specific 

mathematical competencies required.  The PERT assessment does not explain to students 

what a college syllabus looks like, how much time they will be expected to devote to 

coursework outside of class, or how to cope with anxiety or low self-efficacy in college.  

I believe these factors are also necessary in helping ensure a student is college-ready, but 
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these are ignored in this program.  The idea of student-readiness, in general, also seems to 

be ignored here. 

On-Campus Review and Support Prior to Enrollment 

At Worcester State University in Massachusetts, a different readiness program has 

been implemented for the past decade that has fostered powerful, positive change.  

Worcester State administrators and faculty members require their students to take a 

practice version of the college’s placement exam and receive a passing score before 

registering for orientation (Bisk et al., 2013).  If students are unable to receive a passing 

score before orientation (receiving only a few chances to do so), they are required to 

attend at least one two-hour review session on campus in order to receive additional help 

with the mathematics.  Worcester State bases their model on three key principles 

developed by the mathematics department:  (1) students have greater chances of earning 

high grades and feeling successful when they are placed in an appropriate course; (2) 

students appreciate “clear, consistent standards” and; (3) students need a supportive 

environment where professors are willing to help them find success (Bisk et al., 2013, p. 

1). Therefore, the purpose of this program was to provide students with additional 

instruction before enrolling in college courses to help them better prepare for these 

courses and feel ready to proceed (thus, college-readiness enhancement).  The program 

also gave students an opportunity to meet other freshmen, meet some mathematics 

instructors, and learn about college teaching methods and expectations (Bisk et al., 2013).  

Further, it allowed faculty members to identify what their incoming students may need, 

thus also enhancing student-readiness. 

Since implementing this program, the university has seen a drastic improvement 

in mathematical readiness and student achievement in mathematics. Specifically, the 

number of students recommended to enroll in non-credit bearing, remedial courses has 

dropped by 50% and the success rate in entry-level mathematics courses has increased 

from 31% to 80% (Bisk et al., 2013).   Further, the university is retaining more students 
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from freshman to sophomore year.  Allowing students to preview the material on a 

mandatory placement exam while simultaneously offering additional, supportive 

resources on campus to ensure student achievement has proven to be a successful 

endeavor at this university. 

Similar to Worcester State University’s program, the University of Wisconsin-

Milwaukee created a summer bridge program to help incoming freshmen improve their 

mathematical skills before entering the university (Reisel et al., 2012).  “The primary 

purpose of this program has been to improve the mathematics course placement for 

incoming students” (Reisel et al., 2012, p. 421).  Since low placement scores tend to steer 

students away from both business and STEM-based majors, the original goal of this 

initiative was to offer students additional instruction and describe the benefits of STEM-

related career paths.  On a deeper level, the overall intended purpose of the program was 

to enhance college-readiness, and the involved faculty members tried to prepare students 

and introduce them to college expectations (Reisel et al., 2012).  In this program, similar 

to Worcester State’s program, students took an initial placement exam and were given 

feedback on which areas required additional practice or development.  Instructors were 

then made available on campus to assist students through an adaptive, online teaching 

program known as ALEKS (Reisel et al., 2012; Taylor, 2008).  ALEKS helps students 

move through mathematical material at their own pace after creating an individualized 

plan based on their pre-test performance.  Students’ correct or incorrect responses to new 

questions determine the difficulty level of future questions.  While this system has not 

been deemed successful on its own or as a replacement to teaching (Belfield & Crosta, 

2012), the mathematics department at the University of Wisconsin-Milwaukee has found 

it to be very useful when supplemented with additional instruction and faculty support on 

campus.   

Of the 107 students who participated in the program with on-campus instruction, 

74% successfully placed into a higher mathematics course upon completion (Reisel et al., 
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2012).  Research shows that students who are not required to take remedial mathematics 

courses are more likely to pursue mathematics-related majors (Bahr, 2012; Bilsky, 2011; 

Calcagno & Long, 2008; Hagedorn et al, 1999; Hammerman & Goldberg, 2005; Taylor, 

2008).  Further, as discussed in chapter three, in four-year institutions nationwide, 78% of 

students who do not need remedial coursework during college end up graduating within 

8.5 years, but only 52% of students who do require remedial courses graduate in that time 

(Brock, 2010). Therefore, providing students with personalized support and instruction 

before entering college could help improve their overall readiness in mathematics, which 

could also increase their confidence and their corresponding chances of majoring in a 

business or STEM-based field.   

Furthermore, and again mirroring the program at Worchester State, students in 

this program at the University of Wisconsin-Milwaukee are given an opportunity to meet 

their instructors and navigate the campus before entering college.  This could lower their 

initial anxiety and foster relationships between students and college instructors (Kesici & 

Erdogan, 2009; Perrine & And, 1995).  Though the problem of college-readiness is often 

framed in terms of academic ability (Bisk et al., 2013; Conley, 2007; Davis & Shih, 

2007; Long et al., 2009), I believe many students struggle equally with feeling a sense of 

belonging on the campus and feeling confident in their ability to be successful in college.  

In my professional experience working with freshmen, these issues often overshadow 

academic concerns.  The summer programs described here address these issues of 

readiness as well as academic issues by allowing students to spend time on campus, meet 

new people, and work through mathematics problems with other new students and faculty 

members to validate and enhance their abilities in mathematics.  Thus, I believe the 

impact of these programs could be significant in enhancing student-readiness, college-

readiness, self-efficacy, and success. 

Both of these summer programs have limitations, however.  One limitation, which 

some members of the URI mathematics department use to justify why they will not enact 
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such a program, is that students coming to the university from out-of-state may not be 

able to travel to campus over the summer, limiting their ability to participate.  Further, 

students who do travel to participate in such a program would be required to find and pay 

for their own housing, as on-campus housing is generally not provided to students over 

the summer.  Both of these programs also focus heavily on the use of placement exams to 

ensure students are prepared for college and are taking the appropriate courses.  While 

placement exams have generally been found to increase overall student retention and 

GPA (Bisk et al., 2013; Foley-Peres & Poirier, 2008; Reisel et al., 2012; Smith & 

Schumacher, 2005), there are also limitations to using and relying on the results of an 

exam, which are recognized earlier in chapter three (the review of related literature), as 

many educators are against enforcing placement.  However, if programs such as the one 

at the University of Wisconsin-Milwaukee can help students increase their placement 

score, enhance their readiness for college, and thus allow them to begin in a more 

advanced course during their freshmen year, these students may be more likely to seek 

STEM or business degrees. 

Change in Pace 

An additional approach to helping students find success and enhance college-

readiness has been to allow students to move through remedial courses at a faster pace 

than standard courses (Brock, 2010).  This change of pace has been especially popular in 

mathematics courses.  Since students who take remedial courses are less likely to 

graduate (Calcagno & Long, 2008), several colleges have started to offer courses over the 

summer months or during winter break to help students learn remedial material at an 

accelerated pace, or a more high-intensity course that is held over a shorter period of 

time.  At some universities, “students who test just below college level may be assigned 

to a short-term review class rather than a full-semester course… [or] basic skills 

‘immersion’ courses that are shorter in duration but require more hours of attendance 

each week” (Brock, 2010, p. 118).  These programs were designed to enhance student 
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skills in mathematics and thus improve their college-readiness.  The corresponding 

impact of these programs has varied from student to student:  some students were able to 

excel within a few weeks and felt prepared to advance to other courses; others were 

frustrated that their peers were advancing quickly while they struggled to keep up, which 

caused some to stop attending. 

Offering competency-based courses, which students can attend until they feel 

more prepared for advanced courses, may help students graduate sooner while still 

receiving the supplemental instruction or support they need, which was the original 

purpose of implementing alternatively-paced programs (Brock, 2010).  Rather than 

assuming all students who score below a certain level on a placement exam are not 

college-ready and require semester-long remediation, these programs recognize that 

students have varying needs and require diverse levels of instruction.  A potential 

limitation to these review courses, when offered during the regular academic semester, 

may be that students are often allowed to take them while also taking a more advanced 

mathematics course, and thus may not have time to fully grasp the foundational concepts 

before being expected to use them in their other course.  Similar to other programs, 

however, if these courses are offered over the breaks rather than during the regularly 

scheduled semester, out-of-state students may not be able to attend, thus potentially 

limiting participation to in-state students. 

Universities implementing programs similar to those described here have noted 

that: “faculty members generally agree that developing… [new programs] brought the 

department together to discuss how the curriculum would appear” (Felder, Finney, & 

Kirst, 2007, p. 11).  Therefore, communicating about the content and results of these new 

reform efforts could bring the mathematics department together with the College of 

Business and other departments, and force them to examine the current curriculum on a 

more regular basis so that they may work on their own definition of what it means to be 

“college-ready” in mathematics.  Personalizing the readiness enhancement procedures 
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and rationale to fit the specific needs of a university’s students and faculty members 

would be a necessary first step in implementing any reform effort or policy changes 

(Gess-Newsome et al., 2003).  Thanks to this research, the College of Business at URI 

has plans in place to begin the implementation of some alternatively-paced business 

mathematics courses with “just in time” simultaneous review next Fall (D. Rosen, 

personal communication, November 6, 2015). 

Professional Experiences and Connections to My Research 

 The business mathematics course I investigated in this research, BUS 111 at URI, 

consisted of nearly all college freshmen.  Thus, college-readiness is frequently a concern 

for these students, their instructors, and the administration.  Student-readiness should also 

be a concern as universities adapt curricular and instructional methods to accommodate 

new students.  Many students in this BUS 111 course report feeling anxious and unsure 

of how to be successful in business mathematics.  I believe some of the recent reform 

efforts described above, aimed at increasing readiness for mathematics in higher 

education, could benefit students enrolling in BUS 111.  Specifically, offering a summer 

program such as the one at Worcester State or the bridge program at the University of 

Wisconsin-Milwaukee could significantly enhance student success in this gateway 

business mathematics course.  Explaining college expectations and introducing students 

to a syllabus and sample mathematics problems or projects during the summer could 

lower their anxiety, boost their confidence, and make them more aware of what to expect 

in the Fall semester. 

 From my professional experience as an instructor for the College of Business at 

URI, I have found summer immersion programs to be very beneficial to enhancing both 

college-readiness and student-readiness.  I would love to implement summer preparation 

programs for all interested students in the future.  For the past few years, I have taught 

summer courses at URI for the Talent Development (TD) program, which offers financial 

scholarships to first-generation college students who are from racially diverse or 
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underprivileged backgrounds. These students are required to complete a summer program 

prior to their admittance to the university to demonstrate that they are college-ready.  

They take three courses, attend daily tutorials, and participate in workshops on study 

skills and computer literacy.  They are provided free on-campus housing throughout the 

six-week program. 

During the Summer of 2014, I created a new TD course specifically intended for 

students who were business majors, to help them assess and advance their mathematical 

skills prior to taking either MTH 110 or BUS 111.  Students who took this new, 

transitional course and then proceeded to take MTH 110 or BUS 111 in the Fall tended to 

perform better than many of their peers who were not in the TD program, even though 

those non-TD students usually earned higher SAT scores and high school GPAs. 

Therefore, I strongly believe that college-readiness may not be solely due to academic 

ability or performance on exams.  Student exposure to this summer program, which 

showed them how to self-assess their mathematical abilities, introduced them to 

university life and faculty expectations, enhanced their mathematical skills through 

hands-on, business-based projects, and allowed them get to know faculty members and 

other students, had a positive impact on their corresponding grades in a college-level 

business mathematics course.  Further, the course allowed me to better prepare myself as 

an instructor for the students arriving in the Fall once I understood the group’s needs, 

challenges, and strengths. Thus, offering summer programs to help more students at URI 

prepare for college could have a significantly positive impact on college-readiness, 

student-readiness, and student success in business mathematics. 

Remedial education and supportive introductory programs have been, and will 

likely continue to be, necessary components for some students entering higher education 

who may not be deemed “college-ready” from the start, especially in mathematics.  

Students in need of such programs should still be granted the opportunity to earn a 

college degree, and therefore universities must be prepared to meet these students’ needs 
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and offer them support.  Mathematics is one of the key areas where support is needed, 

especially in the business field (Ballard & Johnson, 2007; Smith & Schumacher, 2005).  

Implementing a program that increases communication across K-16 educational levels 

and/or allows students to improve their current readiness level by advancing or brushing 

up on skills essential for college success could create a more welcoming environment and 

could provide students with greater opportunities to maximize their potential for success 

in college.  

Suggestions for Future Research 

As described in detail in the limitations section of chapter four (the research 

design and methodology), this research was limited in the conclusions I was able to draw.  

While the multiple regression analysis I used in this dissertation was quantitative in 

nature to investigate which variables (attitudes towards mathematics, mathematical 

anxiety, time devoted to mathematics outside of class, number of absences, gender, 

placement score, high school GPA, and mathematics SAT score) were significant 

predictors of student achievement in BUS 111, the results from this study can be used to 

inform future research.   

On a personal level, for example, after performing this research, I now want to 

examine students’ specific learning experiences when they are preparing for exams 

versus when they are working on projects, since both assessment procedures are 

frequently employed in the College of Business.  I personally utilize both evaluation 

techniques in the courses I teach (including MTH 110 and BUS 111) and recently have 

been wondering how students experience each assessment, especially considering that the 

results of this research indicate that student attitudes and anxiety in mathematics, as well 

as the time they devote to the subject both in and outside of class, likely influence their 

overall grades in the course.   

Through personal communication, many students have reported feeling as though 

they are able to earn higher grades when they have the opportunity to display their 
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knowledge through a project that they can usually work on with others and spend more 

time on, as opposed to a typical 50-minute or 90-minute exam.  Other students, however, 

have expressed that they feel more comfortable preparing for and taking exams since they 

require less total time and are generally completed on an individual basis where they can 

let their personal learning shine.  Therefore, I would be interested in leading an 

investigation that would lend itself to a mixed-methods research design, as I could 

observe student behaviors in each setting, interview students about their learning 

experiences in each case, compare their scores on each assessment, and administer a 

survey regarding time devoted to studying for exams versus working on projects, for 

example.  This explanatory sequential design would allow me to collect quantitative data 

first and then explore the potential reasoning behind that data using qualitative analysis of 

student voice and experience (Creswell, 2014). 

Furthermore, the research performed in this dissertation addresses many factors 

that lead to (or serve as obstacles to) student success in college business mathematics 

courses.  Each affective and cognitive factor is associated with future research interests.  

Since student attitude towards mathematics is a predictor of student achievement in a 

business mathematics class, for instance, some follow-up questions for further research 

and deeper investigation include:   

1. How do students’ attitudes towards mathematics initially develop? 

2. How do students’ attitudes towards mathematics (specifically confidence 

levels in mathematics) change over time? 

3. What factors influence the way students think about mathematics in 

business courses? 

4. Who influences the way students think about mathematics in business?  

5. How do college freshmen perceive the value of mathematics in business? 
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Similarly, since mathematical anxiety was found to be a predictor of achievement 

in this college business mathematics course, follow-up research studies should address 

questions such as:   

1. What experiences may lead college students to feel anxious in business 

mathematics classes? 

2. How prepared do business students feel in making the transition from high 

school to college-level mathematics?  

3. How do students experience anxiety in business mathematics? 

4. How do student experiences in high school mathematics differ from 

experiences in college mathematics, and what impact does this have on 

students? 

These questions are much more exploratory in nature and would require a more 

inductive approach to research.  Therefore, to address these questions, qualitative 

research designs, including interviews and observations, would likely be the appropriate 

methodology (Creswell, 2014; Fraenkel et al., 2011).  Holding in-depth, open-ended 

interviews with students would help the researcher better understand student experiences 

with business mathematics in college.  Students would be able to explain in greater detail 

how they feel about mathematics and how those feelings may have developed over time.  

The researcher could listen and then ask them follow-up questions to truly gain a deeper 

understanding (Patton, 2002).  Observing students in class would allow the researcher to 

witness some of the perceived expectations of the instructor as well as the climate of the 

classroom.  There would be an opportunity to see how much time the instructor spends 

lecturing, what students tend to be doing during the class, as well as the layout of the 

classroom.  These observations could be discussed and analyzed with students during 

interviews or focus groups.  Further, the instructors could be interviewed about their 

expectations of students and their general pedagogical views.   
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Finally, this research was limited to one course during one semester at one 

university.  Similar research should be carried out at other universities to confirm (or 

contest) the results presented here.  The same study should be replicated to confirm that 

these results were not unique to this specific sample of students.  Further, other predictor 

variables, such as method of instruction, time of day class meets, and class size could be 

included.  I look forward to expanding my knowledge of this topic by performing more 

research in the future. 

Concluding Remarks on Implications for Practice 

College instructors cannot be assured that all students who come to them will be 

ready for college-level work as it is currently presented, but they should offer 

opportunities for dialogue, peer interaction, and reflection that encourage learners to 

relate new knowledge to past experiences, which may help them better understand new 

material (Dewey, 1938; Vygotsky, 1978).  Instructors may find that, with the curricular 

and instructional changes described earlier in this chapter, students are more ready for 

college than originally assumed.  College-readiness cannot be determined by the results 

of standardized test scores, university placement exams, or high school GPAs alone.  Nor 

can students be expected to become college-ready after taking a remedial lecture with 

few opportunities for dialogue or reflection.  In addition to academic advancement 

opportunities, students must engage in conversations about mathematics during, after, 

and prior to their freshman year to help them mentally and emotionally prepare for 

college courses and life after college. 

Most importantly, all instructors should work to prepare themselves for their 

incoming students, with the support of the institution. In my experiences with students, I 

believe that what is currently considered a lack of college-readiness or maturity in 

freshmen courses may actually be, in part, a lack of student interest and motivation in 

mathematics or high mathematical anxiety.  It may be a lack of student-readiness on the 

part of the university.  If students do not believe that what they are learning is important, 
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they are unlikely to spend much time on the course, which may appear to be a lack of 

ability to perform the task as assigned.  By offering interesting and stimulating course 

material that encourages peer interaction and personal exploration, students will likely be 

more willing to devote time and effort to the course (Kesici & Erdogan, 2009; Vygotsky, 

1978).   Regardless of the specific policies implemented to address college-readiness and 

student-readiness, in order to enhance student success in college courses, students in 

business mathematics courses must be engaged in learning practices that foster their 

development and prepare them to become self-directed learners who will thus feel 

empowered to become leaders in their field.
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Appendix A 
 

Beginning of the Semester:  Survey Consent Form and Additional Questions 
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Student ID number:       _______________________________ 
Please check the appropriate blank: 

 __________ I am 18 years of age or older. 

 __________ I am under 18 years of age. 

Is this your first time taking BUS 111?  Please circle one:  Yes /      No 

1.   On average, how many hours per week do you anticipate you will spend working on 
mathematics (BUS 111) this semester (outside of class time)? 
 

a. Less than 1 hour per week 

b. Approximately 1-3 hours per week 

c. Approximately 3-5 hours per week 

d. Approximately 5-7 hours per week 

e. More than 7 hours per week 

2.   Approximately how many BUS 111 classes do you anticipate you will miss this semester? 

a. I will never miss a class this semester 

b. I will miss 1-3 classes this semester 

c. I will miss 4-6 classes this semester 

d. I will miss 7-9 classes this semester 

e. I will miss 10 or more classes this semester 

3.   To what extent do you agree with the statement:  I believe my instructor will 
effectively deliver the content required for this course. 
 

a. I strongly agree with this statement 

b. I agree with this statement 

c. I neither agree nor disagree with this statement 

d. I disagree with this statement 

e. I strongly disagree with this statement   
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Appendix B 
 

End of the Semester:  Survey Consent Form and Additional Questions  
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Student ID number:       _______________________________ 
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Please check the appropriate blank: 

 __________ I am 18 years of age or older. 

 __________ I am under 18 years of age. 

Was this your first semester taking BUS 111?  Please circle one:  Yes /      No 

1.   On average, how many hours per week did you spend working on mathematics (BUS 
111) over the past three weeks (outside of class time)? 
 

a. Less than 1 hour per week 

b. Approximately 1-3 hours per week 

c. Approximately 3-5 hours per week 

d. Approximately 5-7 hours per week 

e. More than 7 hours per week 

2.   Approximately how many BUS 111 classes did you miss this semester? 

a. I never missed a class this semester 

b. I missed 1-3 classes this semester 

c. I missed 4-6 classes this semester 

d. I missed 7-9 classes this semester 

e. I missed 10 or more classes this semester 

3.   To what extent do you agree with the statement:  I believe my instructor effectively 
delivered the content required for this course. 
 

a. I strongly agree with this statement 

b. I agree with this statement 

c. I neither agree nor disagree with this statement 

d. I disagree with this statement 

e. I strongly disagree with this statement  
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Appendix C 

Attitudes Towards Mathematics Inventory (ATMI) 
 
Directions: This inventory consists of statements about your attitude toward mathematics. 

There are no correct or incorrect responses. Read each item carefully. Please 
think about how you feel about each item. Circle the response that most 
closely corresponds to how each statement best describes your feelings. 
Please answer every question. 

 

Student ID number: _______________________________ 

 
1. Mathematics is a worthwhile and necessary subject.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

2. I want to develop my mathematical skills.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

3. I get a great deal of satisfaction out of solving a mathematics problem.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

4. Mathematics helps develop the mind and teaches a person to think.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

5. Mathematics is important in everyday life.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

6. Mathematics is one of the most important subjects for people to study.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

7. College math courses would be very helpful no matter what I decide to study.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

8. I can think of many ways that use math outside of school.  
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Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

9. Mathematics is one of my most dreaded subjects.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

10. My mind goes blank and I am unable to think clearly when working with math.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

11. Studying mathematics makes me feel nervous.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

12. Mathematics makes me feel uncomfortable.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

13. I am always under a terrible strain in math class.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

14. When I hear the word mathematics, I have a feeling of dislike.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

15. It makes me nervous to even think about having to do a mathematics problem.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

16. Mathematics does not scare me at all.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

17. I have a lot of self-confidence when it comes to mathematics.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

18. I am able to solve mathematics problems without too much difficulty.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

19. I expect to do fairly well in any math class I take.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 
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20. I am always confused in my mathematics class.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

21. I feel a sense of insecurity when attempting mathematics.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

22. I learn mathematics easily.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

23. I am confident that I could learn advanced mathematics.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

24. I have usually enjoyed studying mathematics in school.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

25. Mathematics is dull and boring.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

26. I like to solve new problems in mathematics.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

27. I would prefer to do an assignment in math than to write an essay.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

28. I would like to avoid using mathematics in college.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

29. I really like mathematics.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

30. I am happier in a math class than in any other class.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

31. Mathematics is a very interesting subject.  
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Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

32.  I am willing to take more than the required amount of mathematics.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

33. I plan to take as much mathematics as I can during my education.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

34. The challenge of math appeals to me.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

35. I think studying advanced mathematics is useful.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

36. I believe studying math helps me with problem solving in other areas.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

37. I am comfortable expressing my own ideas on how to look for solutions to a 
difficult problem in math.  
 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

38. I am comfortable answering questions in math class.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

39. A strong math background could help me in my professional life.  

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

40. I believe I am good at solving math problems. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 
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Appendix D 

Mathematics Anxiety Scale (MAS) 
 
Directions:  The following are statements about which your opinions are sought.  For 

each statement, please circle the response that most closely indicates your 
extent of agreement or disagreement with the statement. 

 

Student ID number: _______________________________ 

 

1. Math makes me feel uncomfortable and nervous. 

Strongly Agree             Agree             Neutral             Disagree             Strongly Disagree 

2. Math is the most dreaded subject for me. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

3. I find math interesting. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

4. I feel worried before entering a math class. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

5. Math is one of my favorite subjects. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

6. I am not afraid of math exams. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

7. Solving math problems is pleasant for me. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

8. I feel nervous when I am about to do math homework. 
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Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

9. I feel happy and excited in a math class as compared to any other class. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

10. I would prefer math as one of my subjects in higher studies. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

11. Math is a headache for me. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

12. I am afraid to ask questions in math class. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

13. Math doesn’t scare me at all. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

14. My mind goes blank when the teacher asks math questions. 

Strongly Agree            Agree             Neutral             Disagree             Strongly Disagree 

 

 

 

© Mahmood & Khatoon, 2011  

Appendix E 

E-Mail Sent to Students Prior to Fall 2015 Semester 

The following email was sent to all students who were enrolled in BUS 111 during the Fall 2015 
semester.  The email list was obtained from the course instructors via URI’s eCampus system.  
The email was sent one week prior to the start of classes. 
______________________________________________________________________________ 
 
To:  BrookeElise@uri.edu 
BCC:  {Email addresses of all students enrolled in BUS 111 during Fall 2015} 
Subject: BUS 111 Fall 2015 Research Survey 
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Good morning,  
 
You are receiving this email because of your current enrollment in BUS 111 for the Fall 2015 
semester at the University of Rhode Island.  If you are not in BUS 111, please disregard this 
email. 
 
During the Fall 2015 semester, all students enrolled in BUS 111 will be invited to participate in a 
research study designed to investigate the factors that predict success in business mathematics 
courses at URI.  The researcher, Brooke D’Aloisio, will explain the project to you in detail during 
the first week of classes and more information is provided below. You should feel free to ask 
questions.   
 
If you decide to take part in this study, you will complete one survey on the second day of the 
semester and another during the last full week of the semester.  Each survey will take you 
approximately 20 minutes.  Your student ID number will be used as an initial identifier to match 
your pre- and post-survey results with other indicators (your gender, course grade for BUS 111, 
SAT scores, and placement score), but will then be recoded randomly to protect your identity. 
Your name will NEVER be identified in the research and all of your responses will be held in 
confidence. 
 
As a result of your participation in this study, you may have a better understanding of your own 
feelings and attitudes about mathematics.  Further, the researcher may learn more about the 
factors that help predict success in the BUS 111 course at URI.  Findings from this research may 
used to support future students in BUS 111 and similar courses toward success.  It is not 
anticipated that you will experience any negative effects as a result of this study and it will not 
affect your academic standing or your grade in BUS 111, or any other courses, in any way. 
 
Participation is completely voluntary and refusal to participate will not result in any penalty.  You 
do not have to participate.  If you decide to participate, you may choose to stop participating at 
any time during the study.  You may withdraw your consent at any time by simply informing me 
of your decision. 
 
If you have any questions regarding the study, please contact me, Brooke D’Aloisio, in Ballentine 
Hall, Room 202 at BrookeElise@uri.edu or (401)874-4992. 
 
Best wishes with the start of the new semester! 
Brooke D’Aloisio 
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APPENDIX F 

Sample Questions from URI’s Mathematics Placement Exam:  Tier A 

 



 251 

Sample Questions from URI’s Mathematics Placement Exam:  Tier B 
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Sample Questions from URI’s Mathematics Placement Exam:  Tier C 
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APPENDIX G 

Sample BUS 111 Syllabus 

BUS 111 Syllabus 
Introduction to Business Analysis and Applications 

University of Rhode Island, Fall 20xx 
_____________________________________________________________________________________ 
 
Instructor Contact Information 
 Name:   ************ 
 Office:   Ballentine Hall, Room ***  

Office Hours:  MWF 9:00AM-9:50AM; MWF 11:00AM-11:50AM; by appointment 
 E-mail:   **********@ uri.edu 
  
Course Materials  

• Optional:    Applied Mathematics for Business, Economics and the Social Sciences by Frank S. 
Budnick, McGraw-Hill Book Company  (ISBN: 0-390-23153-3) 

• Required:   Scientific calculator, frequent use of SAKAI, access to Microsoft Excel 
  

 
BUS 111 Description  

BUS 111 presents selected mathematical tools and techniques for analysis of business and 
economic problems.  Topics include finite and modern mathematics, the mathematics of 
finance and applied calculus.  Note:  In order to become mathematically literate, it is important to link 
the concepts of mathematics to applications.  Thus, applications (word problems) will be emphasized 
throughout the course. 
 

General Education 
BUS 111 counts as a general education course for Mathematical or Quantitative Reasoning 
(MQ). 

 
Overview of Goals 

The goals of BUS 111 are to help you develop a deeper mathematical knowledge and 
competency required for your career and to prepare you for problem solving in future courses 
and daily life.   

 
Course Expectations 

Because this is a large class, certain "house rules" are needed, and they will be strictly enforced: 
1. Attend each class.  Come prepared and be punctual. If you must be absent, as a 

professional courtesy, contact me prior to your absence and explain to me why you will 
miss class. There will be many quizzes in class and they will be given at the very 
beginning of the class, so make sure you have made the necessary arrangements to be 
on time. 

2. I expect that you will give this course 6-7 hours per week, in addition to class time. This 
is an approximate figure, but don't assume that you can spend less time and still earn a 
grade that you will like.   
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3. Doing well in this course requires effort on your part:  come to class, be ready to learn, 
review your notes regularly, and ask questions.  We will devote some class time each 
day to addressing any problems or concerns you might have.  

4. Be respectful of yourself and your classmates.  No electronic devices of any kind are 
permitted.  This means: 

o No active cell phones.  Turn your cell phones off or on silent prior to coming to 
class. 

o No calculators may be used unless specifically instructed to use one. CELL 
PHONES MAY NOT BE USED AS CALCULATORS DURING QUIZZES 
OR EXAMS. 

5. The University of Rhode Island strongly promotes academic integrity. All submitted 
work must be your own. If you consult other sources (class readings, articles or books 
from the library, articles available through internet databases, or websites) these MUST 
be properly documented, or you will be charged with plagiarism and will receive an F 
for the paper.  In some cases, this may result in a failure of the course as well.  In 
addition, the charge of academic dishonesty will go on your record in the Office of 
Student Life. If you have any doubt about what constitutes plagiarism, visit the website: 
http://gervaseprograms.georgetown.edu/hc/plagiarism.html, the URI Student 
Handbook, and UNIVERSITY MANUAL sections on Plagiarism and Cheating at 
http://www.uri.edu/facsen/8.20-8.27.html - cheating. Any good writer’s handbook as 
well as reputable online resources will offer help on matters of plagiarism and instruct 
you on how to acknowledge source material. If you need more help understanding 
when to cite something or how to indicate your references, PLEASE ASK. 

_____________________________________________-_______________________________________________ 
 

Grading Policy 
Your grade will be based accumulating points based on exams in class, a comprehensive, 
optional final exam, attendance, projects, homework, and quizzes (some announced, some 
unannounced).   

Online Homework 10%    Online Homework 10% 
 Quizzes/Attendance 10%    Quizzes/Attendance 10% 
 Projects  10%  OR  Projects  10% 

Exams (3 total)    50%    Exams (3 total)    70% 
Final Exam  20% 

 
Grading Scale 

A class-wide scale will not be used in this course.  Grades are not negotiable and no extra credit 
is offered on an individual basis. Letter grades will be assigned using the following scale:  

Numeric Average Letter Grade 
92.5 and above A 

90.0-92.4 A- 
87.5-89.9 B+ 
82.5-87.4 B 
80.0-82.4 B- 
77.5-79.9 C+ 
72.5-77.4 C 
70.0-72.4 C- 
67.5-69.9 D+ 
60.0-67.4 D 

Below 60.0 F 
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Attendance 

Attendance is mandatory.  Students who attend this course regularly have been found to be 
much more successful. If you are unable to attend class, you will receive a zero on any 
assignments or quizzes given during class that day. 
 
 

BUS 111 Exams 
NOTE:  EXAMS WILL BE HELD DURING THE EVENING: 

Exam 1      DAY    DATE  TIME  LOCATION 
Exam 2       DAY    DATE  TIME  LOCATION 
Exam 3       DAY    DATE  TIME  LOCATION 

 
 

Homework Expectations 
Homework is an integral component to help you do well in this course.  Each homework 
assignment is expected to reflect your best work.  Weekly homework assignments will be 
posted on Sakai.  They can be found under the ‘Online HW’ tab in Sakai and will be due 
every Sunday.  You will be allowed more than one submission for each assignment and your 
best grade will be recorded.    Start the assignments early to ensure you give yourself 
adequate time to complete it.  NO LATE WORK WILL BE ACCEPTED. 

 
Projects 

Further into the semester, you will receive information about each project requirements in detail. 
1. Projects will not be accepted beyond the stated due date. 
2. Unless otherwise stated, projects are not to be handwritten.  They must be typed in 12-

point font with 1-inch margins. 
3. For some projects, you will have the option of working with a partner.  If you work with  
 a partner, one copy of the project is to be submitted with both names indicated. 

 
SAKAI 

It is your responsibility to check SAKAI on a daily basis.  Important announcements will be 
posted to SAKAI regularly and you will be held responsible for the information posted there. 
SAKAI will contain: 

• A comprehensive, updated grade book to allow you to keep track of your grades. 
• A list of helpful resources including examples, problem sets for each chapter, video 

resources to help you get a handle on some of the concepts covered in the course, study 
guides for exams, etc. 

• Access to the online homework.  
 

Make-Up Policy 
• Exam dates throughout the semester are indicated above.  Start planning now.  If you are 

unable to take the exam at the announced time/day, you must notify me by email or in 
person prior to the date of the exam.  Any conflicts need to be worked out with your 
instructor at least one week in advance of the exam.  Make-up exams will be 
administered for documented/excused conflicts only. Failure to take an exam at the 
announced day/time without prior notification will result in the revocation of the 
privilege of a make-up exam.  

• There are NO MAKE-UPS for on-line homework or in-class quizzes. 
• Your attendance in class, therefore, is critical to your success in this course. 
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_____________________________________________________________________________________ 
 
AN IMPORTANT NOTE ABOUT THE IMPORTANCE OF ALGEBRA RECALL 

The one prerequisite for this course is a recall of your high school algebra/MTH 110 material.  
Without this recall, you may be setting yourself up for failure.  If you have a weak algebra 
background, it may appear that you are doing okay during the first half of the course.  However, 
when we get to the differential calculus, the need for recall will become VERY important.   If 
your background is weak, you are likely to perform very poorly in this portion of the course.   
 
If you have a weak algebra background, you may not be adequately prepared to be successful in 
this class.  If you have a good background, you might need to go back and brush up on some 
areas of algebra that you have not used recently.  On the course website, there is a practice 
algebra pretest.  This short and self-correcting exercise will allow you to assess where you stand 
in the recall of the algebra skills that are required in this course.  If the material seems familiar, 
but you have forgotten some of the algebra principles, you should go back and review these areas 
or see your instructor for additional resources.  

_____________________________________________________________________________________ 
 

University of Rhode Island’s civility policy 
The University of Rhode Island is committed to developing and actively protecting a class 
environment in which respect must be shown to everyone in order to facilitate the expression, 
testing, understanding, and creation of a variety of ideas and opinions. Rude, sarcastic, obscene 
or disrespectful speech and disruptive behavior have a negative impact on everyone's learning 
and are considered unacceptable. I will not tolerate that behavior in my classroom.  Therefore, 
if you feel someone is harassing you during my class, please reach out to me immediately.  I 
will have disruptive persons removed from the class if necessary.   

 ____________________________________________________________________________________ 
 

Accommodations 
Section 504 of the Rehabilitation act of 1973 and the Americans with Disabilities Act of 1990 
require the University of Rhode Island to provide academic adjustments or the accommodations 
for students with documented disabilities. The student with a disability shall be responsible for 
self-identification to the Disability Services for Students in the Office of Student Life, providing 
appropriate documentation of disability, requesting accommodation in a timely manner, and 
follow-through regarding accommodations requested.   
 
It is the student’s responsibility to make arrangements for any special needs and the instructor’s 
responsibility to accommodate them with the assistance of the Office of Disability Services for 
Students.  Any student with a documented disability is welcome to contact me as early in the 
semester as possible so that we may arrange reasonable accommodations. As part of this process, 
please be in touch with Disability Services for Students Office at 330 Memorial Union, 401-874-
2098.  

_____________________________________________________________________________________ 
 
Standards of Behavior 

Students are responsible for being familiar with and adhering to the published "Community 
Standards of Behavior: University Policies and Regulations which can be accessed in the 
University Student Handbook.  If you must come in late, please do not disrupt the class. Please 
turn off all cell phones, pagers, or any electronic devices. 
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____________________________________________________________________________________ 
 
Religious Holidays 

It is the policy of the University of Rhode Island to accord students, on an individual basis, the 
opportunity to observe their traditional religious holidays. Students desiring to observe a 
holiday of special importance must provide written notification to each instructor. I request that 
you provide this notification as early as possible. 
 

____________________________________________________________________________________ 
 
Free Tutoring  

Free tutoring is available for BUS 111 students.  Students who attend tutoring regularly tend to 
earn higher grades than students who do not take advantage of these services.  The tutor for 
BUS111 will introduce him/herself during the first week of class.  The graduate assistant will 
tutor in Ballentine 211 throughout the semester.  Their schedule will be posted on our class 
SAKAI page as soon as it becomes available. Going to see the TA as frequently as possible will 
help you in this course.   
 

____________________________________________________________________________________ 
 

The Academic Enhancement Center 
The work in this course is complex and intensive.  To do the best you can, it’s a good idea to 
visit the Academic Enhancement Center (AEC) in Roosevelt Hall. The AEC offers a 
comfortable environment in which to study alone or together, with or without a tutor. AEC 
tutors can answer questions, clarify concepts, check understanding, and help you to study. You 
can make an appointment or walk during office hours -- Monday through Thursday from 9 am. 
to 9 pm and Friday from 9 am to 1 pm.  For a complete schedule For a complete schedule - 
including when tutors are available specifically for this class - go to www.uri.edu/aec, call (401) 
874-2367, or stop by the fourth floor in Roosevelt Hall. A schedule for the Math Walk-In Center 
can be found on SAKAI.  
 

____________________________________________________________________________________ 
 

The Writing Center 
Projects in this course will be written in professional documents.  The Writing Center is for all 
writers, all disciplines, at all levels, and all stages of writing.  If an instructor suggests that you go 
to the Writing Center, it is not a punishment, and does mean that you are a terrible writer.  It 
means the instructor wants you to receive more individualized attention to your writing than 
s/he is able to provide, given the constraints of the class. It will only improve your grade. If 
possible, call ahead for an appointment (874-4690). Drop-in tutorials are often available, but I 
suggest making an appointment first. You may make repeat appointments, requesting the same 
tutor each time if you wish. See their Web Page: 
http://www.uri.edu/artsci/writing/center/index.shtml for tips on how to make the best of your 
Writing Center visit. 
 

_____________________________________________________________________________________ 
 

Course Content 
This is a working list of what topics can be expected to be covered in class this semester.  Topics 
and dates listed below may change. 
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Week Chapter Topic(s) Discussed 

Week 1 8 
Introduction to BUS 111, Competency Exam 
Mathematics of Finance 

Week 2 8 Mathematics of Finance 

Week 3 
8 

10 
Mathematics of Finance  
Linear Programming 

Week 4 10 Linear Programming 

Week 5 
10 
5 

Linear Programming 
Linear Functions/Break-Even Analysis 

Week 6 6 
Quadratic Functions 
EXAM ONE  

Week 7 
6 
7 

Quadratic Functions 
Exponential Functions 

Week 8 
7 

15 
Differentiation 

Week 9 SPRING BREAK – CLASSES DO NOT MEET 

Week 10 15 
Differentiation 
EXAM TWO  

Week 11 16 Optimization 

Week 12 
16 
17 

Optimization 
Applications of Optimization 

Week 13 17 Applications of Optimization 

Week 14 17 
Applications of Optimization  
EXAM THREE  

Week 15 
5, 6, 7, 8, 10, 

15, 16, 17 
Review for the Final Exam 

 
*The final exam will take place during one of the common exam time slots.  Information 
regarding time/place will be forwarded when it becomes available. 
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APPENDIX H 

Approval Letter to Reproduce and Use ATMI 
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APPENDIX I 

Approval Letter to Reproduce and Use MAS 
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APPENDIX J 

Verbal Scripts Read to Participants 

Second Day of Classes Verbal Script 

Hello everyone!  My name is Brooke D’Aloisio and I am interested in examining 
the factors that can be used to predict success in BUS 111.  Therefore, I would like to 
invite each of you to participate in a research study to help me investigate this issue.  You 
should have received an e-mail from me last week explaining this study. Still, I will 
explain the project to you in detail.  More information will be provided on the consent 
form that I will hand you shortly. You should feel free to ask questions as I explain. 

First, you must be at least 18 years old to participate in this research.  If you 
decide to take part in this study, you will be asked to complete one survey today and 
another during the last full week of the semester.  Each survey will take you 
approximately 20 minutes, so no more than 1 hour total time will be required.  Since you 
will be taking two surveys, your student ID number will be used as an initial identifier to 
match your pre- and post-survey results with other indicators such as the grade you 
receive in this course, your gender, your SAT scores, and your high school GPA, which I 
will obtain from eCampus, along with your mathematics placement score, which I will 
obtain from the math department, with your permission.  As soon as those matches are 
made, your ID number will be deleted to protect your identity. Your name and any other 
identifying information will NEVER be used throughout this research and all of your 
responses will be held in strict confidence. 

If you choose to participate in this study, because of the nature of the questions, 
you may end up having a better understanding of your own feelings and attitudes about 
math.  I am also hoping I will learn more about the factors that help predict success in 
BUS 111, so the findings from this research may used to support future students who take 
BUS 111 and similar courses.   

I do not anticipate that you will experience any negative effects as a result of this 
study and please note that it will not affect your grade in this course or your academic 
standing in any way.  Your participation is completely voluntary. If you decide not to 
participate, there will be no penalty.  Your course instructor will not be told of your 
decision to participate, nor will he/she have access to your survey results. If you 
decide you want to participate, but later change your mind, that is okay as well; you may 
choose to stop participating at any time during the study.  To withdraw your consent at 
any point – now or later on in the semester – just let me know.  My contact information is 
on the board and I will also e-mail you all of my contact information again.  The principal 
investigator and faculty supervisor for this study is Cornelis de Groot.  I will also provide 
his contact information, should you have any questions or concerns. 

Are there any questions?  I will hand a copy of the survey and consent form to 
each of you so that you can read this information yourself before making your decision.  
If you choose not to participate, you are welcome to stay in the room with your 
classmates. 

Thank you all for your time. 
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Last Week of Classes Verbal Script 
 

Hello everyone!  My name is Brooke D’Aloisio.  You may remember me from 
the beginning of the semester:  I am interested in examining the factors that can be used 
to predict success in BUS 111. I would like to invite each of you to participate in a 
research study to help me investigate this issue. I will explain the project to you in detail 
and more information will be provided on the consent form that I will hand you shortly. 
This is the same consent form you received in the beginning of the semester.  You should 
feel free to ask questions as I explain. 

First, you must be at least 18 years old to participate in this research.  If you 
decide to take part in this study, you will be asked to complete a survey today.  This 
survey will take you approximately 20 minutes.  Since you will be taking two surveys, 
your student ID number will be used as an initial identifier to match your pre- and post-
survey results with other indicators such as the grade you receive in this course, your 
gender, your SAT scores, and your high school GPA, which I will obtain from eCampus, 
along with your mathematics placement score, which I will obtain from the math 
department, with your permission.  As soon as those matches are made, your ID number 
will be deleted to protect your identity. Your name and any other identifying information 
will NEVER be used throughout this research and all of your responses will be held in 
strict confidence.  

If you choose to participate in this study, because of the nature of the questions, 
you may end up having a better understanding of your own feelings and attitudes about 
math.  I am also hoping I will learn more about the factors that help predict success in 
BUS 111, so the findings from this research may used to support future students who take 
BUS 111 and similar courses.   

I do not anticipate that you will experience any negative effects as a result of this 
study and please note that it will not affect your grade in this course or your academic 
standing in any way.  Your participation is completely voluntary. If you decide not to 
participate, there will be no penalty.  Your course instructor will not be told of your 
decision to participate, nor will he/she have access to your survey results. If you 
decide you want to participate, but later change your mind, that is okay as well; you may 
choose to stop participating at any time.  To withdraw your consent at any point – now or 
later on in the week – just let me know.  My contact information is on the board and I 
will also e-mail you all of my contact information again.  The principal investigator and 
faculty supervisor for this study is Cornelis de Groot.  I will also provide his contact 
information, should you have any questions or concerns. 

Are there any questions? 
I will hand a copy of the survey and consent form to each of you so that you can 

read this information yourself before making your decision.  If you choose not to 
participate, you are welcome to stay in the room with your classmates. 

Thank you all for your time. 
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