
Rendering Hypercomplex Fractals

by Anthony Atella

An Honors Project Submitted in Partial Fulfillment

of the Requirements for Honors in

The Department of Mathematics

and Computer Science

The School of Arts and Sciences

Rhode Island College

2018

Abstract
Fractal mathematics and geometry are useful for applications
in science, engineering, and art, but acquiring the tools to
explore and graph fractals can be frustrating. Tools available
online have limited fractals, rendering methods, and shaders.
They often fail to abstract these concepts in a reusable way.
This means that multiple programs and interfaces must be
learned and used to fully explore the topic. Chaos is an
abstract fractal geometry rendering program created to solve
this problem. This application builds off previous work done
by myself and others [1] to create an extensible, abstract
solution to rendering fractals. This paper covers what fractals
are, how they are rendered and colored, implementation,
issues that were encountered, and finally planned future
improvements. An attached appendix contains UML diagrams.

Documentation, repositories, a gallery, and executables can be
found at

https://anchorwatchstudios.com/chaos/

i

https://anchorwatchstudios.com/chaos/

Contents
1 Introduction 1

1.1 Overview . 1

2 Fractal Mathematics 2
2.1 Weierstrass . 2
2.2 Cantor . 3
2.3 Koch . 4
2.4 Sierpiński . 5
2.5 Hausdorff . 5
2.6 Fatou & Julia . 6
2.7 Mandelbrot . 6
2.8 Norton . 7
2.9 White & Nylander . 8
2.10 Applications . 8

3 Fractal Algorithms 10
3.1 Cantor Set . 10
3.2 Tree . 10
3.3 Julia & Juliabulb . 11
3.4 Mandelbrot & Mandelbulb . 11
3.5 Newton-Basin . 12
3.6 Mandelbox . 12

4 Fractal Rendering 15
4.1 Methods . 15
4.2 Parallelism . 18
4.3 Video . 18

5 Fractal Shading 19
5.1 Methods . 19
5.2 Lighting . 20

6 Implementation 21
6.1 Design Patterns . 21
6.2 Core . 22
6.3 Swing . 24
6.4 Android . 26

7 Issues Encountered 28
7.1 True Resolution . 28
7.2 Observer Feedback . 28
7.3 Document Serialization . 28
7.4 Arbitrary Method Signatures . 28
7.5 Complex Plot Rotation . 29
7.6 Image Scaling . 29
7.7 Timeline Visibility . 29

ii

8 Future Updates 30
8.1 Microkernel Architecture . 30
8.2 Fractals . 30
8.3 Shaders . 30

9 Conclusion 31
9.1 Special Thanks . 31

10 Bibliography 32

11 Appendix: UML Diagrams 34

iii

1 Introduction
Chaos is capable of rendering fractals with different rendering methods and shaders applied
dynamically. The program is extensible so new fractals, shaders, and rendering methods can
be added. These fractals can be saved to and loaded from files. Each file has keyframes and
video settings. Chaos uses these keyframes and settings to produce .mp4 video using linear
interpolation between keyframes. Chaos also supports exporting .png images. Fractals currently
implemented include the Cantor set, Julia, Juliabulb, Mandelbox, Mandelbrot, Mandelbulb,
Newton Basin, and trees. Chaos can render fractals using either Java2D or OpenGL.

The program is implemented in Java for PC and is currently being implemented in Android.
The interfaces rely on the AWT, Swing, and Android libraries. Geometry is rendered with
OpenGL using the JOGL library, OpenGLES using the Android libraries, and standard Java2D.
The portability of Java allows the program to run on four out of five of the largest platforms;
Windows, Macintosh, Linux, and Android. Writing a version for iOS in Objective C would be
trivial due to the similarity of the languages and the OpenGL bindings.

The PC version is geared more towards technical users and artists that want to produce high
quality images and video or explore the mathematical extremes and behaviors of fractals. The
mobile version would be more appropriate for non-technical users and is designed to reach a
wider audience by trading functionality for ease of use. The mobile version will have a virtual
reality mode. This mode will use stereoscopic cube maps that are pre-rendered (due to power
consumption and the time cost of rendering). This version will also export images. Sharing to
social media will be easier with built in sharing features that mobile platforms offer. Sharing
features will streamline deployment of images and increase usership through word-of-mouth.

1.1 Overview
The first chapter will cover the background of fractal mathematics. It’s difficult to describe what
a fractal is. Learning the steps that people took to come to our current knowledge on the subject
does a better job of explaining what a fractal is than a rambling, heuristic description.

The second, third, and fourth chapters contain pseudocode algorithms for each fractal, render
method, and shader, respectively. Implementation specific code can be found in the appendix.

Chapter five covers implementation specific details. Design patterns and paradigms are cov-
ered in the first section. The second section contains details about the portable core system
structures, such as the Document and Fractal. The third section covers interface implementa-
tions in PC and Android.

Chapters six and seven discuss the issues encountered when writing Chaos, and the bugs that
still exist. Chapter eight is a plan for future development cycles and bug fixes.

Finally, chapter seven is the bibliography and chapter eight is the appendix which contains
UML diagrams that illustrate the architecture of the system.

1

2 Fractal Mathematics
A fractal is a curve or geometric structure that is statistically self-similar at all scales [2]. These
visually striking structures have interesting mathematical properties, like having a finite area
but an infinite surface area. Another peculiar property of fractals is that they are continuous

Figure 1: Examples of fractal geometry

everywhere, but differentiable nowhere. Fractals are found in nature in surprising abundance.
The healthy human heartbeat [3, 4], the dendrites of a river, plants, lightning, galaxies, smoke
swirling through the air, the tempo of a rapidly dripping faucet, and even the way humans build
roads on a global scale are all examples of natural fractals. Figure 1 shows some examples of
fractals rendered by Chaos.

2.1 Weierstrass

Figure 2: The Weierstrass curve [5]

The term fractal wasn’t coined until 1975 by Benoit Mandelbrot [6]. Until then they were
called “mathematical monsters”. Mathematicians avoided these “monsters” because they had no
tools like computers available to analyze them. Karl Weierstrass was the first mathematician to
discover the fractal behavior of a curve in 1872. Weierstrass argued that a curve doesn’t have to
be differentiable just because it is continuous. He presented this argument as a sum of a Fourier
series:

f(x) =

∞∑
n=0

ancos(bnπx)

2

Where 0 < a < 1, b is a positive odd integer, and ab > 1 + 3
2π. To put it simply, the

Weierstrass curve contains smaller and smaller copies of itself. Any segment of the curve one
observes will contain the whole. The curve isn’t differentiable anywhere because there are critical
points on it, and those critical points are contained within every point. In other words, every
point is a critical point at some scale. This notion challenged the conventional wisdom of the
time, which was that all continuous curves are differentiable, except at their critical points.
Figure 2 illustrates how a point on the Weierstrass curve contains a smaller version of the curve.

2.2 Cantor
Georg Cantor was a student of Weierstrass at the University of Berlin. In 1883, Sixteen years
after receiving his doctorate degree, Cantor came to a similar conclusion. He introduced the
Cantor function, also known popularly as “The Devil’s Staircase”. This function is comparable
to the Weierstrass curve in that it is self-similar at all scales and is produced by altering smaller
graph segments on an existing graph with each iteration. The Cantor function can be expressed
as a piecewise recursive function:

f0(x) = x

0 ≤ x ≤ 1

fn+1(x) =


1
2fn(3x) 0 ≤ x ≤ 1

3
1
2

1
3 ≤ x ≤

2
3

1
2 + 1

2fn(3x− 2) 2
3 ≤ x ≤ 1

The Cantor function is often expressed as ternary, and therefore calculated in base three for
simplicity. On the 0th iteration the function is a straight line from (0, 0) to (1, 1). If the digit in
the nth decimal place is a 1 on iteration n, that point is excluded from the set. In other words,
the middle third is always excluded from the set each step. Figure 3 shows how a staircase is
revealed as n approaches infinity.

Figure 3: The Cantor function after one, two, and three iterations [7]

The Cantor set is related to the Cantor function. The Cantor set is the set of points that
have a derivative that is non-zero after iterating. The visible lines of the Cantor set at level n
can be thought of as representing the diagonal lines of the Cantor function at iteration n, as
illustrated in Figure 4. Each pair of smaller thirds are drawn beneath the next, like a binary
tree. The Cantor ternary set is defined as:

3

Cn = {x|x ∈ [0, 1] and f ′n(x) 6= 0}

Figure 4: The Cantor set after three iterations

C = ∩∞n=0An

A0 = [0, 1]

A1 = [0,
1

3
] ∪ [

2

3
, 1]

A2 = [0,
1

9
] ∪ [

2

9
,
1

3
] ∪ [

2

3
,
7

9
] ∪ [

8

9
, 1]

A3 = ...

The Cantor function and set have strange and interesting properties that offer more insight
into the “monsters”. Cantor’s function at infinity iterations has an overall increase of 1 on the
interval [0,1], and yet each point has a derivative of 0. Another strange feature of the Cantor
function is that it has a length of 2 at infinity iterations. At zero iterations it has a length of

√
2.

A completely flat line would have a length of 1. This implies the line traveled straight across the
x-axis, then straight up the y-axis! The Cantor set is also a paradox. The number of elements
in the set at infinity iterations is infinite and uncountable. The set is extremely large, and yet
the length of the set is 0 at infinity iterations, making it also extremely small [8].

2.3 Koch
Niels Fabian Helge von Koch, a Swedish mathematician, wanted to show that this phenomenon
could be demonstrated with only simple geometric primitives. In a paper he wrote in 1904 [9] he
describes a new curve that exhibits the same behavior as the Cantor function and the Weierstrass
curve. The length of the Koch curve increases with each iteration by adding smaller triangles
to the curve. Three of these curves together form the famous Koch snowflake, as seen in Figure
5. Koch’s idea of combining three curves to form a closed polygon was an important transition
from fractal algebra to fractal geometry.

Figure 5: The Koch snowflake at zero, one, two, and three iterations [10]

4

2.4 Sierpiński
Wacław Sierpiński was a Polish mathematician who also extended the ideas of Cantor. He
introduced the Sierpiński carpet and Sierpiński triangle, both of which are like the Koch snowflake
in that they build off Cantor’s idea of thirds in a geometric way. The carpet is constructed by
making a Cantor set in two dimensions at the same time. The triangle is constructed by breaking
up the larger triangle into three smaller similar ones with a hole in the middle, recursively. The
Menger sponge is a three-dimensional variant of the Sierpiński carpet. The discovery of the
Apollonian gasket by Gottfried Wilhelm Leibniz, a circular version, predates Sierpiński’s findings.
Figure 6 shows the similarities between these three fractals.

Figure 6: The Sierpinksi carpet, Sierpinski triangle, and Apollonian gasket [11, 12, 13]

2.5 Hausdorff
A German mathematician named Felix Hausdorff developed a formula for determining how rough
a surface is in 1918. The Hausdorff dimension describes this property with a ratio of how similar
the figure is to itself and the scale at which the similarity occurs. The Hausdorff dimension can
be defined as:

D =
log(n)

log(s)

Where n is the number of self-similar figures within the figure, and s is the scalar multiple
that would make the self-similar figures the original size. Normal geometry always has an integer
Hausdorff dimension, although non-integer dimensions are allowed. For example, if a line is
divided into two equal parts it has a Hausdorff dimension of one because there are two parts
that need to be increased by a multiple of two to become the original size, giving log(2)

log(2) = 1.
Similarly, if a plane is divided into four equal parts it will have a Hausdorff dimension of two
because it has four parts that need to be increased by a multiple of two to become the original
size, giving log(4)

log(2) = 2. The same concept can be applied to higher dimensions. These results
are integers because the self-similar figures fill the entire original figure. When the self-similar
figures create space within the whole their Hausdorff dimension becomes a decimal number less
than their original dimension. The Sierpinski triangle is a self-similar figure that has a decimal
Hausdorff dimension. On the first iteration, a Sierpinski triangle is broken into three equal parts
that are half the size of the original, leaving a space in the middle. This gives a Hausdorff
dimension of log(3)

log(2) ≈ 1.58. The triangle occupies a two-dimensional space, yet it is only using a

5

little more than three quarters of that space. Mandelbrot later used the Hausdorff dimension in
his definition of a fractal.

2.6 Fatou & Julia

Figure 7: The Julia set with various C values

Pierre Fatou introduced the field of holomorphic dynamics to mathematics in 1920, or what
we would now call complex dynamics. This field focuses on numbers in the complex plane
and functions that involve iteration. Gaston Julia was simultaneously arriving at the same
conclusions as Fatou. Unfortunately for Fatou, Julia was more persistent in patenting his work,
and we now refer to the set they both discovered as the Julia set. The complement of the Julia
set is sometimes referred to as the Fatou set as a conciliation to Fatou. The Julia set can be
defined as:

Jn = {z| lim
n→∞

fn(z) 6=∞}

Where,

fn(z) =

{
z n = 0

fn−1(z)
2 + C n > 0

Where z is a complex number, and C is a complex constant. As the value of C changes the
geometry changes drastically. Figure 7 shows a Julia set with various C values. The graph can
be generated by calculating whether each pixel is in the set, passing the pixel as the complex
number z. These sets were discovered relatively early, but they still couldn’t be rendered in a
practical way. Computers still weren’t available commercially. It was only later that Mandelbrot
would use computer science to peer deeper into the "monsters". This set would later serve as
the backbone for Mandelbrot’s work.

2.7 Mandelbrot
Fractal mathematics and academia in general lost momentum because of World War I and II,
and it wasn’t until the 1970s when Benoit Mandelbrot, the most recognized person in fractal
geometry, discovered a way to unify all Julia sets into one incredibly similar equation. Mandel-
brot’s equation is the reverse of the Julia set. Instead of declaring some constant C and starting
at the point z, Mandelbrot set z to 0+0i and passed the point as C. The Mandelbrot set relates
to the Julia set because it contains all Julia sets. Each point of the Mandelbrot set represents

6

some value C that can be used in the Julia function. Julia sets with C values inside the Man-
delbrot set are contiguous, where values outside the set are “fractured” and non-contiguous. The
Mandelbrot set is self-similar, as illustrated in figure 8, and it describes an infinite number of
Julia sets that are also self-similar. The Mandelbrot set is defined as:

Mn = {C| lim
n→∞

fn(z) 6=∞}

Where,

fn(z) =

{
0 + 0i n = 0

fn−1(z)
2 + C n > 0

Where C is a complex constant. Mandelbrot was able to render the Julia and Mandelbrot
sets for the first time with the help of computers, and the fractal community was reinvigorated
once they saw the awesome beauty of a complex fractal set rendered for the first time.

Figure 8: The Mandelbrot set at various zoom depth

2.8 Norton
Alan Norton was the first person to take these concepts to a higher dimension in 1982 using
quaternions, a four-dimensional complex number [14, 15]. Complex dimensions must be bicom-
plex, or in pairs of two, to be valid. Each real number must be paired with a multiple of

√
−1, so

it makes sense to skip the third dimension and increase the number of dimensions to four. Nor-
ton described his images as two-dimensional and three-dimensional “slices” of four-dimensional
quaternions, as shown in Figure 9.

Figure 9: Quaternion (4D) Julia sets rendered in 3D [16, 17]

7

The methods used to generate these images are the same as the previously discussed complex
plotting methods, except that quaternions are multiplied differently. Bisection of the three-
dimensional geometry reveals the two-dimensional geometry within. Other complex fractals like
the Mandelbrot have been rendered like this as well.

2.9 White & Nylander
Daniel White and Paul Nylander rendered a three-dimensional triplex version of the Mandelbrot
set in 2009—the Mandelbulb. They created a formula to square triplex numbers. Sir William
Rowan Hamilton struggled with this problem in the 1840s, which eventually led him to the dis-
covery of quaternions. White and Nylander circumvented this issue using spherical coordinates.
The mapping of triplex coordinates to Cartesian coordinates is as follows:

x+ yi+ zj ∈ R3 :


x = ρcos(θ)cos(φ)

y = ρcos(θ)sin(φ)

z = ρsin(θ)

Where i2 = j2 = ij = −1. The Juliabulb and other complex fractals can also be rendered
using Julia’s formula in conjunction with White and Nylander’s formula. Bisections of these
three-dimensional geometries also reveal the underlying two-dimensional geometry. White and
Nylander inspired others to create many variations of triplex fractals, such as the Mandelbox,
Menger sponge, Sierpiński systems, and n-gons. Figure 10 shows a Mandelbulb rendered with
Chaos using White and Nylander’s formula.

Figure 10: The Mandelbulb with increasing n values

2.10 Applications
Fractals aren’t just pure mathematical constructs. They have surprisingly useful applications in
real world situations. Fractal modeling software is useful for generating artwork, but it is also
useful for visually identifying if a fractal model is appropriate for describing a system, as well
as predicting how that system might change over time. Fractal geometry is used as a tool in
various industries to improve product quality, speed, and size as well.

Fractals can be used to generate three-dimensional mountains and landscapes that appear
to be more realistic than manually created meshes. This is done by breaking up a plane or
prism into similar parts and raising or lowering the common vertices by a small amount, as
shown in Figure 11. This process is repeated many times, creating a noise pattern that looks
natural. Adjusting the way height perturbations are calculated changes the overall variation
and height of the surface created. Some popular video games like Minecraft and No Man’s Sky
employ this strategy to generate their entire landscapes. Using fractal topology decreases the

8

Figure 11: Topology can be generated using a fractal algorithm [18]

amount of space needed to store game world data to almost nothing. Only the altered parts of
the landscape need to be saved, meaning that a save file can start at zero bytes, and will grow
very slowly as the game progresses. Network load is also decreased because players are only sent
packets containing the altered landscape. Games with maps of this size would not be possible
without fractal topology.

Antennas are metal objects that collect electromagnetic waves in the air. A straight antenna
occupies a lot of space but bending the antenna into a triangle or square occupies significantly
less space while still offering the same amount of functionality. A key feature of fractals is that
they have an infinite surface area, but a finite area. Fractal antennae exploit this phenomenon
by maximizing the perimeter of the shape created when the antenna is bent while minimizing its
area. Figure 12 shows some examples of fractal antennas. Due to the self-similar nature of the
antennae they can also receive a wider band of frequencies. Cell phones use fractal antennas to
increase power and decrease size.

Figure 12: Antennas can capture a wider range of frequencies when shaped like fractals [19, 20, 21]

Ecologists studying trees and populations can take samples of data from individual trees and
understand the way the entire forest works because the forest grows in a self-similar way to the
trees it contains, and all tree branches are self-similar to the whole tree. They have extrapolated
the overall resource consumption of the forest as well as its CO2 absorption and oxygen output
using this method.

The previous examples demonstrate the power of fractals and their ability to describe natural
phenomena with very few tools. With a small sample of data scientists can extrapolate informa-
tion about vastly larger self-similar systems. In addition to describing self-similar systems, their
properties can also be exploited to improve the quality of technologies.

Fractal rendering software aids in developing these solutions and subsequently creates beau-
tiful images that people seem to enjoy looking at. Chaos renders fractals abstractly, so it can
be used to render any fractal. It can even render non-fractal geometry. Future iterations of the
application will adopt a microkernel architecture, so that users can extend the platform them-
selves. This flexibility will increase its usefulness to professionals of any discipline that are trying
to utilize the power of fractal mathematics.

9

3 Fractal Algorithms
Each algorithm implemented in Chaos will be described here in pseudo-code. For implementation
specific code, please refer to the repository at https://anchorwatchstudios.com/chaos/.

3.1 Cantor Set
The Cantor set can be implemented recursively. A threshold minimum length is required as a
base case to stop the recursion. This example illustrates the ternary set, but the Cantor set can
be implemented in many ways by altering the segment length denominator and or number of
Cantor function calls in the recursive case.

cantor(x, y, length, threshold) {

drawLine(x, y, x + length, y);

if(length > threshold) {

segment = length / 3;
cantor(x, y + 1, segment, threshold);
cantor(x + segment * 2, y + 1, segment, threshold);

}

}

3.2 Tree
A tree fractal can be implemented recursively. A threshold minimum length is required as a base
case to stop the recursion. This example illustrates a two-dimensional, bi-directional tree, but a
three-dimensional tree works the same way, and trees can branch more than twice in the recursive
case. A common implementation is a tri-directional, two-dimensional tree. This variation can
form a Sierpiński triangle with certain conditions. The step variable is a percentage greater than
zero and less than one. The tree should start at an angle of −angle.

tree(length, angle, threshold, step) {

rotate(angle);
drawLine(0, -length);
translate(0, -length);

if(length > threshold) {

tree(length * step, angle, threshold, step);
tree(length * step, -angle, threshold, step);

}

}

10

https://anchorwatchstudios.com/chaos/

3.3 Julia & Juliabulb
The Julia set is traditionally implemented non-recursively. Each pixel in the image is passed into
the Julia function as the complex number z. Each iteration either alters z to be smaller or larger
and it is compared to the threshold. This algorithm works for higher dimensions as well.

julia(z, C, n, iterations, threshold) {

result = 0;

for(i=0;i<iterations;i++) {

z = pow(z, n) + C;
result++;

if(length(z) > pow(threshold, 2)) {

break;

}

}

return result;

}

3.4 Mandelbrot & Mandelbulb
The Mandelbrot set is the same as the Julia except that each pixel in the image is passed into
the function as the complex number C, and z is usually set to 0+0i. This algorithm works for
higher dimensions as well.

mandelbrot(z, C, n, iterations, threshold) {

result = 0;

for(i=0;i<iterations;i++) {

z = pow(z, n) + C;
result++;

if(length(z) > pow(threshold, 2)) {

break;

}

}

11

return result;

}

3.5 Newton-Basin
The Newton-Basin converges on the roots of a function by comparing the function to its deriva-
tive. The equation used in this example is: zn+1 = α

zp
n+C

pzp−1
n

where z is a complex point, α, and C
are complex constants, and p is an integer.

newton(z, a, n, C, iterations, epsilon) {

result = 0;

for(i=0;i<iterations;i++) {

numerator = a * (pow(z, n) + C);
denominator = n * pow(z, n - 1);
oldZ = z;
z = numerator / denominator;
result++;

if(length(z - oldZ) < epsilon) {

break;

}

}

return result;

}

3.6 Mandelbox
The Mandelbox is a system that uses two functions. One function folds the point in space in a
rectangular way, and is called a “box fold”, and the other folds the point in a spherical way, and
it is called a “sphere fold”. A box fold is first performed and then a sphere fold at each iteration.
If the point does not escape a threshold distance it is in the set. This algorithm works like the
Juliabulb and Mandelbulb, except the distance estimation is calculated differently. The point
being tested for is C.

mandelbox(z, C, fixedRadius, minRadius, foldLimit, scale,
iterations, threshold) {

result = 0;

for(i=0;i<iterations;i++) {

12

z = scale * sphereFold(boxFold(z, foldLimit),
fixedRadius, minRadius) + C;

if(length(z) > pow(threshold, 2)) {

break;

}

result++;

}

return result;

}

boxFold(z, foldLimit) {

if(z > foldLimit) {

z *= (2 * foldLimit) – z;

}
else if(z < -foldLimit) {

z *= -(2 * foldLimit) – z;

}

return z;

}

sphereFold(z, fixedRadius, minRadius) {

r2 = dot(z, z);

if(r2 < minRadius) {

z *= (fixedRadius / minRadius);

}
else if(r2 < fixedRadius) {

Z *= (fixedRadius / r2);

13

}

return z;

}

14

4 Fractal Rendering
It is important to separate the process of rendering fractals from calculating them and shading
them. Fractals are abstract concepts and there are many ways of rendering them. Abstraction of
the rendering process is the single most important paradigm of Chaos. This abstraction allows
for maximum flexibility in both creating new methods of rendering as well as adapting to newly
discovered ones. The methods of rendering implemented in Chaos are described here.

4.1 Methods
Drawing The most basic rendering method and the default for Chaos is simple drawing. Frac-
tals that use this method include the Cantor set and tree fractals. This method usually doesn’t
utilize the GPU, so it is one of the least efficient methods of rendering, as well as the most
primitive. The program may translate, rotate, and scale the graphics context and draws lines,
points, and polygons with a chosen color.

draw(context) {

context.setColor(#000000);
context.fillRect(0, 0, width, height);
context.translate(140, 283);
context.rotate(16);
context.scale(4);
context.setColor(#ff0000);
context.drawLine(90, 45, 450, 900);
...

}

Complex Plot To plot a graph of the complex plane each pixel must represent a point on
the plane. Each point is evaluated by the complex function to be graphed. The result of the
function at that point is later used in shading. Each pixel must represent a point at some scale,
and there are an infinite number of continuous points, so the scale must be defined. In other
words, before the pixel is evaluated it must first be scaled from screen coordinates to graph
coordinates. Then, the point is rotated. Finally, the point is translated. Doing these operations
in this order is designed to cause the observer to feel like the camera is moving, not the graph.
The rotations and translations happen relative to the graph or camera’s current position, not the
origin. Switching the order of rotation and translation will cause the observer to feel as though
everything is moving and rotating relative to the origin.

The graph can be represented by two complex numbers and one decimal number; the min-
imum and maximum possible values, and the rotation. The same graph can be rendered at
different resolutions, so it is necessary to supply one as a parameter as well.

complexPlot(pixel, resolution, min, max, rotation) {

point = scale(pixel, resolution, min, max);
point = rotate(point, rotation);
point = translate(point, min, max);
return f(point);

15

}

scale(p, resolution, min, max) {

range = max – min;
ratio = p / resolution;
aspect = resolution.x / resolution.y;
x = min.x + range.x * ratio.x * aspect;
y = min.y + range.y * ratio.y;
return vec2(x, y);

}

rotate(p, rotation) {

rc = cos(rotation);
rs = sin(rotation);
x = p.x * rc – p.y * rs;
y = p.x * rs + p.y * rc;
return vec2(x, y);

}

translate(p, min, max) {

range = max – min;
origin = min + range / 2;
x = origin.x + p.x;
y = origin.y + p.y;
return vec2(x, y);

}

Ray March Ray marching is a volumetric rendering method. A camera in three-dimensional
space looks in a direction and a plane in front of the camera represents the view, as seen in
figure 13. When a frame is drawn each pixel on the view plane has a ray sent through it from
the camera origin. Each ray starts off very small and is advanced by an increment at each step.
A signed distance function is used to detect collisions with geometry in the space [22, 16]. If
the ray collides with a geometry the function returns the number of steps it took to reach the
geometry, as well as various information about the marching process. The background color is
drawn if the ray does not collide with any geometry after the maximum number of iterations.

rayMarch(position, resolution, camOrigin, camLookAt, camUp,
iterations, threshold) {

result = 0;
position = scale(position, resolution);

16

Figure 13: Rays are shot from the camera through the image plane [23]

direction = getDirection(position, camOrigin, camLookAt, camUp);

for(i=0;i<iterations;i++) {

distance = f(position);

if(distance < threshold) {

break;

}

position += distance * direction;
result++;

}

return result / iterations;

}

scale(position, resolution) {

ratio = position / resolution;
aspect = resolution.x / resolution.y;
return vec2(ratio.x * aspect, ratio.y);

17

}

getDirection(position, camOrigin, camLookAt, camUp) {

right = normalize(cross(lookAt, Up));
lookAt = normalize(camLookAt);
up = normalize(camUp);
return normalize(right * position.x + up * position.y + lookAt);

}

4.2 Parallelism
Fractal algorithms are complex and take time to run due to their iterative nature, so parallelism
should be used wherever possible. Exploring fractals without parallelism is almost impossible
and always frustrating. All the escape time fractals are calculated on the GPU using SIMD
parallel processing with OpenGL.

4.3 Video
In the absence of audio, a video is just a series of images or frames. Keyframes can be used to
describe many frames of a video through interpolation. Chaos uses linear interpolation to export
video from the keyframes contained in an open file. Each keyframe describes an entire fractal,
shader, and render method. Each primitive variable within each construct is interpolated with
a percentage based on the frames per second and frames per keyframe.

linearInterpolate(old, new, percent) {

difference = new – old;
return old + difference * percent;

}

18

5 Fractal Shading
Shading fractals is an arbitrary process. There are many variables that can be used to describe a
given pixel’s color. Choosing which ones and why is an art in and of itself. Shading is important
because different coloring methods can offer different insight into the intrinsic properties of
fractals. One method may highlight what happens when a certain value is changed, while another
may highlight distance from the origin for example.

Shading should be abstracted away from the calculating and rendering processes, although
variables that are a product of those processes can be useful, such as a ray’s magnitude or a
point’s minimum distance from the origin. This complicates the shader’s relationship to the
renderer because there is a disparity between what values various renderers can return and what
values various shaders expect to receive. The obvious solution would be to abstract what is
returned from the renderer and use polymorphism to deal with the problem. However, GLSL
doesn’t support polymorphism, so somewhat arbitrary values must be passed in a standard order
until low level languages like GLSL incorporate polymorphism. This is unlikely to ever change
though due to the nature of the language.

5.1 Methods
Iterative The most common and intuitive way to shade a fractal is by counting the number of
iterations it takes to break the threshold for each point and then dividing by the total number
of iterations. This number is a percentage and is therefore quite convenient for multiplication
purposes. When a color’s components are multiplied with this number, lower values produce
duller colors, and higher values produce brighter colors. The monochromatic, dichromatic, and
minimum distance shaders included with Chaos all use a variation of this method.

There are many subtle ways in which this solution can vary. A boolean option would be to
only color values that are ones or zeros. This creates a Rorschach inkblot like image. Another
option would be to multiply by the iteration percent as described above. More complex variants
use other variables, like the magnitude of the point being tested, in conjunction with iteration
percentage to produce more exotic color schemes.

getFragment(fragCoord, color) {

percent = f(fragCoord);
return color * percent;

}

Random Random colors can be chosen for each fragment, creating a gaussian noise effect
that looks like television static. This is rather simple when rendering on the CPU due to the
availability of random number generators (RNGs), but when using the GPU there are no RNGs
available, so care must be taken when selecting how each random color will be chosen. There are
many ways to approach this problem. Here is one solution that offers a high degree of randomicity
at the cost of execution time [24].

getFragment(fragCoord) {

float a = 12.9898;
float b = 78.233;

19

float c = 43758.5453;
float dt = dot(fragCoord.xy, vec2(a, b));
float sn = mod(dt, 3.14);
return fract(sin(sn) * c);

}

5.2 Lighting
Lighting is a component of shading, and it too can complicate the relationship the shader has
to the renderer. Lighting is optional, but it can expose intrinsic properties of the subject that
weren’t immediately apparent without it. Light quality can benefit from variables produced from
the rendering process as well. Chaos doesn’t implement lighting, but future iterations will allow
multiple lights to be added to a scene.

20

6 Implementation
Chaos was implemented in Java for Windows, Macintosh, and Linux, and is currently being
implemented in Android. The system can be divided into two parts; The core and the interfaces.
The core system components are designed to be portable from standard Java to the Android
flavor. The interfaces are implemented in a non-portable way but use the same core components
for things like the document structure and managing tasks.

6.1 Design Patterns
Command Pattern The command pattern, as seen in figure 14, was used to decouple the
user interfaces from the core system. Actions and tasks are kept separate from core constructs,
and the running program manipulates the constructs through these actions and tasks. Actions
and tasks are coupled with the interface and are therefore not portable, but all core structures
subsequently are. The advantages of using the command pattern far outweigh the disadvantages.

Figure 14: The Command Pattern separates commands from the classes that call them [25]

The command pattern decouples classes that invoke operations from the actual operations
[26, 27]. This allows for executing the same command from separate places, like the toolbar and
the menu. This also allows command queue systems, undo, and redo to be possible. Extending
systems that implement the command pattern is easy because it can be done by simply writing
a new command class.

The disadvantage of such a system is that there are a high number of classes and maintenance
can be cumbersome[26, 27]. If the core system changes, actions that use any deprecated methods
must be corrected.

Observer Pattern The observer pattern, as seen in Figure 15, was used to notify interface
components of document changes. Observers register with subjects, asking to be notified if any
changes are made. When changes are made to a document the document manager notifies all
registered document manager observers, such as value sliders, status bars, menu bars, and the
rendering canvas.

This pattern is useful because it streamlines event handling with a single registration for each
observer. The observer pattern decouples the observer’s actions from the subject and simplifies
the very complicated process of keeping track of and notifying each observer.

The disadvantage of the observer pattern is that it can cause memory leaks if not implemented
properly. If an observer is registered with a subject it cannot be collected for garbage. Also,
feedback loops and race conditions are possible when observers call the subjects notify method.
This is necessary when a value slider updates, for example. The slider must notify the manager
that the document has changed, and that will in turn notify the slider to move to the correct
position.

21

Figure 15: The Observer notifies the Subject when an event has occurred [28]

Chaos uses an observer-observer pattern to simplify handling multiple documents for multiple
interface elements. The manager observes the open documents and keeps track of the selected
document, and the interface elements observe the manager. This way multiple documents can be
open and the interface elements only need to observe one document manager instead of observing
all open documents.

Interface Pattern A simple interface pattern [29] was used to abstract and decouple the stages
of the calculation, rendering, and shading processes on the GPU. The calculation, rendering, and
shading interfaces are all well-defined, and shader program fragments can be concatenated to
form complete shader programs. Abstract method definitions and method overloading were used
to create an interface pattern. For example, a Julia set can be rendered by concatenating the
complex plot, complex math, Julia, and color program fragments.

Using multiple files increases readability, reusability, and offers a kind of pseudo-encapsulation
by keeping variables being passed to the shader at various stages in separate files. This approach
is much easier to debug because processes are independent of each other and can be unit tested.
The only drawback to using multiple files is having more files to keep track of.

6.2 Core
The core contains portable system elements that describe the document, document and task
management, math, reflection, and common OpenGL interfaces. This section describes the
details of the core system architecture.

Document The document model is abstract and allows for multiple file types to be defined.
All documents contain a file and a boolean value that describes if the document has been edited.
The document can register observers and notify them when a change has been made. A default
file type of .frc2 is defined. The .frc2 file type contains global settings and a list of keyframes.
Each keyframe contains a fractal, a render method, and a shader. Figure 18 in the appendix
shows the relationships between the document model components.

A document manager contains documents, observes them, and keeps track of the current
document index. Document manager observers such as interface elements then register with the
document manager to vicariously observe changes to the current document. This helps to avoid
memory leaks because each subject is responsible for registering and unregistering itself as an
observer. The document manager, for example, registers itself as an observer to a document when
it is opened, and unregisters itself when it is closed. Likewise, each interface element registers
itself with the document manager when the program starts and is destroyed when the program
completes.

22

The document parser is responsible for saving and loading documents to and from a file.
This process is abstract and relies heavily on the file format. The default method implemented
in Chaos uses Google’s GSON library to convert Java data structures to JSON and vice versa.

Fractal Fractals are completely abstract at the lowest level. The only things all fractals
have in common is that they can be interpolated, cloned, and have a description. An escape time
interface extends the fractal interface by adding iterations, threshold, and a method to determine
if a point falls in a set. This interface covers most popular fractals like the Mandelbrot, Julia,
and Newton-Basin, as well as their higher dimensional counterparts. The escape time interface is
parameterized with the type of point being tested, like complex or triplex. Simpler fractals like
the tree and Cantor set implement the fractal interface directly. Each fractal contains variables
that describe the fractal, getters and setters, and static defaults for those variables. Figure 19
in the appendix shows the relationships between fractals.

Render Method Render methods are also abstract, can be cloned and interpolated, and
have a description. Render methods all have a method to return their available render implemen-
tations. Render implementation is defined as an enum, and each render method must supply a
list of these enums with the get capabilities method. Each render method contains variables that
describe the render method, getters and setters, and static defaults for those variables. Figure
20 in the appendix shows the relationships between the rendering model components.

Render Implementation A render implementation manager is a parameterized interface
that keeps track of concrete rendering objects and pairs them with fractal classes. When the
program needs to produce a rendering object it calls get implementation on the render imple-
mentation manager, supplying the fractal class as an argument. An object of the parameterized
type capable of completing the rendering is returned if a match can be found, or null if none
exists. A render implementation manager must exist for each render implementation enum.

Shader Shaders can be cloned, interpolated and have a description. Each shader must
define a get fragment method which takes a four-dimensional vector, containing information
about the fractal and rendering process, as a parameter and returns a color. Figure 21 in the
appendix shows the relationships between the shader model components.

Color is represented as a class that holds four integers for red, green, blue, and alpha. The
monochromatic, dichromatic, and trichromatic interfaces extend each other and define getters
and setters for one, two, and three colors respectively.

Settings The settings class is cloneable and contains variables that apply to all keyframes.
This structure contains the document resolution, current render implementation, and video set-
tings like frames per second and frames per keyframe, as well as static defaults for these variables.

Math The math package contains structures for vectors and hypercomplex numbers, as well as
a discrete number and interpolation interface. The interpolation interface provides static methods
for interpolating primitives, as well as a parameterized interpolate method. The discrete number
interface simply defines a getter and setter for a boolean value. Figure 22 in the appendix shows
the relationships between the interfaces and classes in the math package.

23

OpenGL The GL package contains a common interface for OpenGL shaders. These shaders
should not be confused with the shader contained within the document model. Shaders in
OpenGL are programs that run on the GPU in parallel for each pixel. Implementations of this
interface should provide a method to get and set an integer id, get a string array representing a
program, get a string log, and compile the program.

Simple GL shader is an abstract class that implements the GL shader interface and provides
convenience methods to load a program from an input stream or a string. All concrete imple-
mentations of GL shader in Chaos extend the simple GL shader class. Concrete implementations
are not included in the core because all platforms do not recognize all OpenGL implementations.

Reflection The reflect package contains a single utility class for retrieving all classes in a
package and getting their simple names. This class is useful for filling menus dynamically.

Task Tasks extend the runnable interface and represent a series of instructions to be run on a
thread. Tasks must specify a pause and stop method, and they must provide a method to return
the current progress. Tasks can register task observers and notify them when progress is made.
Figure 23 in the appendix shows the relationships between components of the task model.

A task manager contains tasks, observes them, and keeps track of the current task. Task
manager observers such as interface elements then register with the task manager to vicariously
observe the progress of the current task. This helps to avoid memory leaks because each subject
is responsible for registering and unregistering itself as an observer. The task manager, for
example, registers itself as an observer to a task when it is added, and unregisters itself when
it is complete. Likewise, each interface element registers itself with the task manager when the
program starts and is destroyed when the program completes.

A priority task is a task which implements the priority interface. The priority interface
extends comparable by providing a getter and setter for an integer priority. A priority queue
task manager is an abstract class that uses a priority queue to select its next task. All concrete
implementations of task manager except the single task manager and multi-task manager extend
the priority queue task manager.

There are four concrete implementations of the task manager; the single task manager, the
synchronous task manager, the asynchronous task manager, and the multi-task manager. The
single task manager stops any running task to begin new tasks immediately. Only one task may
run at a time. The synchronous task manager runs one task at a time but has a priority queue of
waiting tasks that execute when the current task finishes or is cancelled. The asynchronous task
manager runs a fixed number of tasks simultaneously and has a queue for waiting tasks. The
multi-task manager is a convenience class containing the previous three implementations with
delegate methods and constants to access them.

6.3 Swing
The desktop interface for Chaos was written using the Java Swing API in conjunction with the
Java for OpenGL bindings (JOGL) and the Java AWT library. The application window contains
several components used to manipulate the document, as shown in figure 16. All interface
elements implement the document manager observer or task manager observer interfaces to
facilitate updates.

Interface The menu and tool bars are implemented using a JMenuBar and JToolBar, respec-
tively. The status bar shows progress and a message on a JPanel using a JProgressBar and a
JLabel. The timeline displays JButtons on a JPanel that represent the keyframes in the current

24

Figure 16: The PC interface, written in Java Swing

document. A JOptionPane is used to deliver popup messages to the user, and a JFileChooser is
used to select files to save or open. FileFilters were used to prevent the selection of files with the
wrong extension.

The workspace extends JTabbedPane and contains canvases that the fractals are rendered
on. Clicking a tab causes the document manager to change the current document index to the
selected tab index. Canvases are implementation specific, and a multi-canvas contains all other
implementations in a CardLayout. When the document is updated the appropriate canvas is
shown for the current render implementation.

The rollout also extends JTabbedPane. The rollout contains three tabs; fractal, shader, and
render. Each tab contains a JPanel with a CardLayout. The CardLayout contains all editors
for the tab category. When the document index is updated the CardLayout switches to the
appropriate editor. Editors contain JSliders, JColorChoosers, and other various Swing elements
that manipulate the document. A debug area that displays a description of the current document
using a JTextArea is attached to the bottom of the rollout.

Event Chaos uses AWT actions to execute commands. The action class in Chaos contains one
static sub-class that extends Action for each command. This makes it easier to remember what
the names of commands are when using an IDE with code completion, and it reduces the number
of files. It does however increase the size of the action class by a significant amount.

AWT key and mouse listeners collect input from the user. Key listeners and mouse listeners
manipulate the render method to move the camera. Each render method has its own key and
mouse listeners that are added to the multi-canvas.

Java 2D Rendering with the Java 2D Graphics API was implemented using tasks from the
Chaos core. The Cantor, complex plot, and tree have corresponding tasks that extends a base

25

class. These tasks describe the steps required to render the fractal and display it using the
Graphics API and a Java 2D canvas. Figure 24 in the appendix shows the relationships between
components of the Java2D rendering model.

OpenGL 4.0 Chaos utilizes OpenGL 4.0 through the Java OpenGL Bindings library (JOGL).
The base interfaces for abstract OpenGL shaders from the Chaos core are implemented to produce
concrete programs and shaders that are capable of rendering fractals using an OpenGL 4.0 canvas.
Figure 25 in the appendix shows the relationships between components of the OpenGL rendering
model.

An image program renders the image using another program with the desired resolution to
a frame buffer and then samples a resized image to the back buffer to be displayed. When a
request to save an image is received, the canvas returns the image on the frame buffer. This
additional step is needed so the image resolution is preserved when saving data.

Related rendering programs have intermediary ancestors that contain common variables and
methods. Vertex buffer and array objects are represented in an object-oriented way to increase
readability. Each program ancestor passes its own uniform variables to the shader at runtime, and
classes that extend these ancestors override the method used to pass uniforms and add their own
instructions to the process. For example, the render program specifies the resolution, the complex
plot program specifies graph data, and the fractal programs specify information about fractals to
the shader. This encapsulation of uniform shader variables increases readability and reusability.
It also corresponds one-to-one with the encapsulation used in the GLSL files, making it even
easier to understand. Figure 26 in the appendix shows the relationships between components of
the OpenGL 4.0 shading model.

The OpenGL shaders used by the previously mentioned programs all extend the SimpleGLShader
class from the Chaos core. Each shader loads a series of GLSL fragment files and concatenates
them, then returns the resulting program as a string. Loop variables are replaced dynamically
when the shaders are loaded because GLSL requires the use of hard-coded loop variables.

6.4 Android
Chaos is currently being implemented for Android. Creating a mobile version will increase
usership and brand awareness because of the increased accessibility to a wider audience of people.
The Chaos core system and OpenGL ES programs have been written, and an interface has been
marked up using Balsamiq. The limited screen size for mobile applications means less space to
place controls and descriptions, so the interface is currently undergoing testing to determine the
correct ratio of functionality and ease-of-use.

Interface The desktop version of Chaos is geared more towards technical users and artists
that want to produce high quality images and video or explore the mathematical extremes and
behaviors of fractals. The mobile version will be more appropriate for non-technical users who
are just discovering fractals for the first time. It will have responsive layouts for multiple screen
sizes, so a tablet or phone can be used comfortably. Touch gestures will be used to modify values
and move the camera instead of sliders and desktop controls. Mock-ups have been created, as
shown in figure 17, and prototyping has begun.

The mobile version will have a virtual reality mode. VR mode will use stereoscopic cube
maps that are pre-rendered (due to power consumption and the time cost of rendering). Sharing
to social media will be easier with built in sharing features that mobile platforms offer. Google
Chromecast will allow users to explore fractals on a larger screen and more easily share their
experience with others.

26

Figure 17: Mock-ups of the Android interface

OpenGL ES 2.0 Chaos utilizes OpenGL ES 2.0 through the Android bindings. The architec-
ture of the OpenGL shader and program system is very similar to the OpenGL 4.0 implemen-
tation. Each level of program abstraction is responsible for passing its own uniform variables to
the shader at runtime. Shaders extend the SimpleGLShader class from the Chaos core. 27 and
28 in the appendix shows the relationships between components of the OpenGLES 2.0 rendering
and shading models, respectively.

27

7 Issues Encountered
There were several unexpected issues encountered that slowed the implementation process sig-
nificantly. Some of these issues were solved after many hours of research and debugging, while
others were not solved and still exist as bugs.

7.1 True Resolution
Originally there was no image program and programs drew directly to the back buffer. Each
program was responsible for resizing the image it produced. This led to the realization that the
issue of resizing could be abstracted away from the drawing process.

Including a frame buffer solves this problem. Drawing to the frame buffer and then sampling
it allows the program to keep a full resolution image in memory while drawing to the screen at
the desired resolution.

Learning about how to use a frame buffer was daunting and time-consuming because updated
documentation and examples are scarce. Documentation and forums often refer to the fixed-
function pipeline (FFP) used in OpenGL 2.0. This method of rendering has essentially been
deprecated but its documentation somehow dominates the results of online searches.

7.2 Observer Feedback
When an observer is registered with a subject and it tells the subject to notify all observers
it subsequently notifies itself. The user interface is designed to both update and be updated
by changes made to a document. This causes observer feedback because when a slider value
changes it must notify the document manager, which in turn notifies the observer. The values
of the sliders are set, and the feedback loop continues.

To stop the feedback a boolean value was included in the observer that indicates whether the
observer is currently listening for updates from the document manager. This value is set to false
when a document manager must be notified and set to true when the notification is complete.

7.3 Document Serialization
Whenever a change is made to the document model all previously saved files will fail to load
in the updated version. This is because the document and its components must be serializable,
so GSON can determine what version of the data structures to use. Due to time restrictions
serialization of the document model could not be included. Future iterations of the project will
solve this problem.

7.4 Arbitrary Method Signatures
The GLSL shader language doesn’t allow the use of polymorphic classes, so the renderer returns
an arbitrary array of data to the shader. Not all shaders use all the information being passed.
In the future a new shader might need more information than what is currently provided. There
clearly needs to be a layer of abstraction here for the type returned from the renderer. Unfor-
tunately, polymorphism isn’t possible with GLSL, so the only solution was to be cautious about
what was sent to the shader. This problem will be revisited in future iterations. GLSL allows
structures and interface blocks, so perhaps they can be used to solve the problem.

28

7.5 Complex Plot Rotation
When the user clicks and drags the complex plot moves relative to the mouse. When the plot is
rotated it must still move relative to the mouse, so rotation must be considered. When images
are square the direction that the mouse moves can simply be rotated to translate the graph in the
correct direction. When an image is not square the aspect ratio, r = width

height , must be considered.
A bug exists in the program that causes the plot to move asynchronously with the mouse if

the image is not square and the plot is rotated. This is probably due to the order of operations
when considering aspect ratio and rotation simultaneously.

7.6 Image Scaling
The image program renders another program to a frame buffer, then samples that image to draw
a scaled version on the screen. The size of the drawing area determines the sampled image size
and position. If the drawing areas aspect ratio is greater than the image aspect ratio then the
height of the drawing area is used to calculate the sample image size and position. If the image
aspect ratio is greater than the width of the drawing area is used. This behavior is the same as
the background fit CSS style. The image is always centered and as large as it can be within the
bounds of the drawing area.

The Java2D canvas successfully implements the background fit behavior, but it was never
finished in the OpenGL implementation. Only the height is used to calculate the size of the
sampled image with OpenGL.

The OpenGL background fit behavior was never finished because another problem arose
during implementation that was never solved. It appears that the frame buffer overflows when
the image is significantly larger than the drawing area, and as a result the image has missing
parts. This is evidently due to the frame buffer because when the image is saved there are missing
parts as well, proving that it isn’t the sampling that is causing the problem. This shouldn’t be
a big issue because most people will be generating images roughly the size of their own displays
or less. This means that a large display is needed to generate higher quality images though.

7.7 Timeline Visibility
Sometimes when a new fractal is created the timeline doesn’t inflate properly and display the
first frame button. When a new frame is added the timeline inflates. A user would never need
to click the first frame button when there are no other frames, so this issue is very minor.

The timeline adds and removes buttons from a JPanel when updated, then repacks and
revalidates itself, so this is almost certainly the problem. There are a few alias methods to pack
and validate Swing interfaces. Future research will probably reveal that an inappropriate or
deprecated method was used.

29

8 Future Updates
Several updates in future development cycles will fix existing bugs and introduce new features.
A major microkernel architecture update is anticipated, as well as new fractals, shaders, and
render methods.

8.1 Microkernel Architecture
In order to make a clean interface layer for extensions a kernel must be developed to load
fractals, shaders, render methods, and render implementations dynamically and apply them when
necessary. A base plugin class will be included that developers can extend to include their own
fractals, shaders, render methods, and render implementations by extending and implementing
the base classes and interfaces provided by the API. The kernel will load plugins or modules
from a folder containing .jar files. A library of GUI components will come with the API to speed
up the process of making controls. Moving to a microkernel architecture will decrease coupling,
increase cohesion, and increase the overall system modularity and extensibility at the cost of
increased complexity.

8.2 Fractals
Several new fractals will be added, and a few fractals will be updated. New fractals will include
n-gons, apollonian gaskets, quaternion escape time variants, and multifractals.

The Cantor set will be made to look more interesting by coloring the space between lines, and
a set of controls will be created to move around the set. The Cantor set will also be implemented
in two and three dimensions, the Sierpiński carpet and the Menger sponge, respectively.

The tree fractal will be modified to have branch width, so the result will look more like a
tree. A set of controls will also be created for the tree. The number of branches will be dynamic.
This will allow a tree to form a Sierpiński triangle as a bonus. A three-dimensional variant will
be implemented as well.

The updated Newton basin will feature a dynamic C value. Two-dimensional and three-
dimensional variations of the Newton basin will also be explored.

8.3 Shaders
Shaders are arguably the most important part of Chaos and yet they were focused on the least
due to time restrictions. There is a lot of room for improvement. The interface layer between
the renderer and shader needs to be cleaner, new and interesting shaders must be implemented,
and light needs to be incorporated to provide a sense of realism.

30

9 Conclusion
The document model should contain only portable abstract data types, so the document can be
opened on multiple platforms and loaded with various implementations of the document parser.
Changes to the document model should be serialized so different versions of the file type can be
handled.

Fractals, renderers, and shaders should be abstracted from each other. Encapsulation should
be used to hide the many variables used to describe these structures. Nothing should be assumed
about any structure. Fractals shouldn’t be expected to render a certain way, they are only a
geometric construct. Likewise, a renderer should never choose the color of the pixels, it should
only iterate through them. A shader should determine the color of the pixels.

GLSL shaders should be written in layers that complete one task each and abstractly reference
each other through an interface pattern. Shader fragments increase readability and reusability
through encapsulation.

Render method should be abstracted from the implementation because it allows the user to
change the implementation at runtime. An interface should never be forced to use a certain
render method.

Using a multi-level observer pattern allows multiple observations to occur vicariously. Multi-
ple documents can be open by using this pattern, and many user interface elements can update
automatically when the document is edited or changed.

The command pattern couples commands with implementation specific user interfaces and
decouples commands from the system core. How the system is used is abstracted from what the
system is intrinsically.

Chaos follows these principles to deliver maximum code portability, modularity, flexibility,
and reusability when rendering hypercomplex fractals. It will become an open source project and
hopefully a community of enthusiasts will embrace it. Chaos is a tool created to make beautiful
artwork and accelerate education in fractal mathematics, calculation, rendering, and shading.

9.1 Special Thanks
I would like to thank my advisors and professors, Dr. Sally Hamouda, Dr. Namita Sarawagi, Dr.
Robert Ravenscroft, and Dr. John Burke, for helping me develop the application and write the
thesis. Their insights allowed me to re-frame and fix problems that I initially could not solve.

31

10 Bibliography

References
[1] T. Beddard, “Fractal lab,” http://sub.blue/fractal-lab, 2011.

[2] B. Mandelbrot, “How long is the coast of britain?” Science, vol. 156, pp. 636–638, 1967.

[3] B. A. Cipra, “A healthy heart is a fractal heart,” SCIAM News, vol. 36, no. 7, 2003.

[4] A. L. Goldberger, “Fractal electrodynamics of the heartbeat,” Annals of the New York
Academy of Sciences, vol. 591, pp. 402–409, 1990.

[5] “Weierstrass curve,” https://en.wikipedia.org/wiki/Weierstrass_function, 2008.

[6] H. Trochet, “A history of fractal geometry,” http://www-groups.dcs.st-and.ac.uk/history/
HistTopics/fractals.html, 2009, accessed on 1/25/18.

[7] “Plotting the cantor function,” https://tex.stackexchange.com/questions/241622/plotting-
the-cantor-function, 2015.

[8] C. Shaver, “An exploration of the cantor set,” https://www.missouriwestern.edu/orgs/
momaa/ChrisShaver-CantorSetPaper4.pdf, 2009, accessed on 1/27/18.

[9] H. V. Koch, “On a continuous curve without tangents, constructible from elementary geom-
etry,” 1904.

[10] A. M. de Campos, “Koch snowflake,” https://en.wikipedia.org/wiki/Koch_snowflake, 2007.

[11] “Sierpiński carpet,” https://en.wikipedia.org/wiki/Sierpinski_carpet, 2014.

[12] “Sierpiński triangle,” https://en.wikipedia.org/wiki/Sierpinski_triangle, 2013.

[13] “Apollonian gasket,” https://en.wikipedia.org/wiki/Apollonian_gasket, 2008.

[14] A. Norton, “Generation and display of geometric fractals in 3d,” ACM SIGGRAPH Com-
puter Graphics, vol. 16, no. 3, pp. 61–67, 1982.

[15] ——, “Julia sets in the quaternions,” Computers & Graphics, vol. 13, no. 2, pp. 267–278,
1989.

[16] T. Beddard, “4d quaternion julia set ray tracer,” http://2008.sub.blue/blog/2009/9/20/
quaternion_julia.html, 2009, accessed on 2/9/18.

[17] “Quaternion julia,” https://commons.wikimedia.org/wiki/File:Quaternion_Julia_x%3D-
0,75_y%3D-0,14.jpg, 2010.

[18] A. M. de Campos, “Fractal landscape,” https://en.wikipedia.org/wiki/Fractal_landscape,
2007.

[19] “Fractal antennas,” http://www.vk6fh.com/vk6fh/fractal.htm.

[20] J. J. de Oñate, “Fractal antenna experiment,” http://www.m0wwa.co.uk/page/
M0WWA_fractal_antenna.html.

32

http://sub.blue/fractal-lab
https://en.wikipedia.org/wiki/Weierstrass_function
http://www-groups.dcs.st-and.ac.uk/history/HistTopics/fractals.html
http://www-groups.dcs.st-and.ac.uk/history/HistTopics/fractals.html
https://tex.stackexchange.com/questions/241622/plotting-the-cantor-function
https://tex.stackexchange.com/questions/241622/plotting-the-cantor-function
https://www.missouriwestern.edu/orgs/momaa/ChrisShaver-CantorSetPaper4.pdf
https://www.missouriwestern.edu/orgs/momaa/ChrisShaver-CantorSetPaper4.pdf
https://en.wikipedia.org/wiki/Koch_snowflake
https://en.wikipedia.org/wiki/Sierpinski_carpet
https://en.wikipedia.org/wiki/Sierpinski_triangle
https://en.wikipedia.org/wiki/Apollonian_gasket
http://2008.sub.blue/blog/2009/9/20/quaternion_julia.html
http://2008.sub.blue/blog/2009/9/20/quaternion_julia.html
https://commons.wikimedia.org/wiki/File:Quaternion_Julia_x%3D-0,75_y%3D-0,14.jpg
https://commons.wikimedia.org/wiki/File:Quaternion_Julia_x%3D-0,75_y%3D-0,14.jpg
https://en.wikipedia.org/wiki/Fractal_landscape
http://www.vk6fh.com/vk6fh/fractal.htm
http://www.m0wwa.co.uk/page/M0WWA_fractal_antenna.html
http://www.m0wwa.co.uk/page/M0WWA_fractal_antenna.html

[21] “Sacred geometry: How cell phones work using fractals,” http://www.theoracleslibrary.com/
2015/05/19/sacred-geometry-how-cell-phones-work-using-fractals/, 2015.

[22] J. Wong, “Ray marching and signed distance functions,” http://jamie-wong.com/2016/07/
15/ray-marching-signed-distance-functions/, 2016, accessed on 2/25/18.

[23] “Ray tracing (graphics),” https://en.wikipedia.org/wiki/Ray_tracing_(graphics), 2008.

[24] Lumina, “Tutorials: Noise,” http://web.archive.org/web/20080211204527/http:
//lumina.sourceforge.net/Tutorials/Noise.html, 2008, accessed on 3/9/18.

[25] “Command pattern,” https://en.wikipedia.org/wiki/Command_pattern, 2017.

[26] C. Giridhar, Learning Python Design Patterns: 2nd Edition, 2016, ch. 7, sec. 5.

[27] Miafish, “Command pattern pros and cons,” https://miafish.wordpress.com/2015/01/16/
command-pattern-pros-and-cons/, 2015, accessed on 3/9/18.

[28] G. Bleiker, “Observer pattern,” https://en.wikipedia.org/wiki/Observer_pattern, 2018.

[29] “Interface pattern,” http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/
interface.html, 2013, accessed on 3/9/18.

33

http://www.theoracleslibrary.com/2015/05/19/sacred-geometry-how-cell-phones-work-using-fractals/
http://www.theoracleslibrary.com/2015/05/19/sacred-geometry-how-cell-phones-work-using-fractals/
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
http://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://web.archive.org/web/20080211204527/http://lumina.sourceforge.net/Tutorials/Noise.html
http://web.archive.org/web/20080211204527/http://lumina.sourceforge.net/Tutorials/Noise.html
https://en.wikipedia.org/wiki/Command_pattern
https://miafish.wordpress.com/2015/01/16/command-pattern-pros-and-cons/
https://miafish.wordpress.com/2015/01/16/command-pattern-pros-and-cons/
https://en.wikipedia.org/wiki/Observer_pattern
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/interface.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/interface.html

11 Appendix: UML Diagrams

Figure 18: The document model

Figure 19: The fractal model

34

Figure 20: The rendering model

Figure 21: The shader model

35

Figure 22: The math package

Figure 23: The task model

36

Figure 24: The Java2D rendering model

37

Figure 25: The OpenGL 4.0 rendering model

Figure 26: The OpenGL 4.0 shading model

38

Figure 27: The OpenGL ES rendering model

Figure 28: The OpenGL ES shading model

39

	Introduction
	Overview

	Fractal Mathematics
	Weierstrass
	Cantor
	Koch
	Sierpinski
	Hausdorff
	Fatou & Julia
	Mandelbrot
	Norton
	White & Nylander
	Applications

	Fractal Algorithms
	Cantor Set
	Tree
	Julia & Juliabulb
	Mandelbrot & Mandelbulb
	Newton-Basin
	Mandelbox

	Fractal Rendering
	Methods
	Parallelism
	Video

	Fractal Shading
	Methods
	Lighting

	Implementation
	Design Patterns
	Core
	Swing
	Android

	Issues Encountered
	True Resolution
	Observer Feedback
	Document Serialization
	Arbitrary Method Signatures
	Complex Plot Rotation
	Image Scaling
	Timeline Visibility

	Future Updates
	Microkernel Architecture
	Fractals
	Shaders

	Conclusion
	Special Thanks

	Bibliography
	Appendix: UML Diagrams

