The HUMANIZER:

A Much Needed Tool for Genetic Engineering

By
Stacy Vang
An Honors Project Submitted in Partial Fulfillment
of the Requirements for Honors
in

The Department of Mathematics and Computer Science

Rhode Island College

2018

Abstract

The Humanizer is a program developed to solve a problem genetic re-
searchers encounter when humanizing genes. To humanize a gene means to
make modifications to a model organisms gene so it may perform in a way that
is more like how it would perform in humans. This is done by making changes
to a model organisms gene only when a discrepancy exists between the model
organisms gene and the human gene. Today, researchers in this field spend long
hours humanizing genes manually because there is no other way to do it. In ad-
dition, the length of genes can range from hundreds to thousands of nucleotide
base pairs which can make the process even more dreadful. If done manually,
it is inevitable that researchers have to humanize each nucleotide, one by one.
Such a process is time consuming, error-prone, and requires the coordination
of many tools. Therefore, the purpose of The Humanizer is to change the
manual process into an automatic process, cutting the wait time from several
days to several minutes. This application performs as any researcher would:
determining genes in test organisms by querying through databases, comparing
and retrieving related sequences, and humanizing the gene one base at a time,
among other things.

Contents

1

2

6

Introduction

Background and Related Work

2.1 Understanding the biology
2.2 Learning BioPython
2.3 Related bioinformatics tools

Design

3.1 System Architecture
3.2 User interface design

Implementation

4.1 A Step-by-Step Walkthrough

Testing

5.1 Functional testing
5.2 Usability testing

Conclusions and Future Work

A Program Code

15
16

35
35
40

40

44

List of Figures

O 1O U Wi

DN RN NN DD = = = = = = = = ©
N O UL W N~ O OO0 Ttk WwhhH—~=O

28
29
30
31

32
33

34

35

Exons and Introns 2
Codon Bias: Drosophila Melanogaster (Fruit Fly) 5
Codon to Amino Acid Table 7
Architecture Diagram 11
The Humanizer: Implementation Flow Chart 16
The Humanizer: Finding the Executable Application 17
Codon Bias Database: Instruction 18
Codon Bias Database: Elements in database 18
Codon_Bias 2D _List and Codon_Bias Directory 20
Welcome Greeting 21
Test Organism Error L. 21
Test Organism and Gene 22
Entrez Search 22
Entrez Results 23
Select Test-Organism DNA Sequence Record 24
BLASTing to Retrieve Test-Organism Protein Sequence 25
BLASTing to Retrieve Human Protein Sequence 26
Select Human Protein Sequence Record 27
Aligning Protein Sequences L. 28
3-Frame Translation, 29
BioPython: Codon Table 30
The humanizing process 31
Returns Humanized DNA Sequence and Prompts to Save Sequence . 33
Saving results in a text file on user’s desktop 33
End of Programo 34
Text file of saved results 34
Automatic Nucleotide Search with the Humanizer: finding the test

organism’s DNA sequence 35

Manual Nucleotide Search: finding the test organism’s DNA sequence 36
Automatic BLASTX Search: finding the test organism’s protein sequence 37
Manual BLASTX Search: finding the test organism’s protein sequence 37
Automatic BLASTX Search with the Humanizer: finding the human

protein sequence e 38
Manual BLASTX Search: finding the human protein sequence 38
Automatic humanized form: includes protein sequences alignment, 3-
frame translation, and determination of the open reading frame . . . 39
Manual humanized form: reverse check with BLASTX against homo
SAPIENS e e e e e e 39

Flowchart of next steps 42

1 Introduction

Working with Dr. Geoffrey Stilwell, head of the genetics research team at Rhode
Island College, I have designed and developed an automated tool called “The Hu-
manizer”. The purpose of this program is to improve the way genetic researchers
perform a task known as “humanizing” genes, by converting the task from a manual
process into an automatic process.

The Humanizer automates an inherently tedious and error-prone manual process
and, for the first time, makes it possible for researchers to perform this task in min-
utes rather than days. The Humanizer performs as any researcher would: determining
genes in test organisms by querying through databases, comparing and aligning re-
sults to retrieve related sequences, and humanizing the gene one base at a time,
among other things. Not only that, but one of the strengths of this application is its
ability to incorporate all the different modules required in a manual job into just one
application.

One of the uses of the Humanizer will be to help with research of human diseases.
When we take notice of the years passing by, as if we were watching a time-lapse
video, we would notice that the planet we call Earth has quickly transformed into
a technology driven environment by the dominant omnivores we call homo sapiens,
humans. As we learn more, our curiosity grows generating the beginning of an ever-
growing loop of learning.

Among our many curiosities lies the need and urge to figure out more about dis-
eases that hinder the lives and bodily functions of our own kind. Genes are segments
of DNA that hold the instructions to code for specific traits, or proteins, of an or-
ganism. More than 3,000 human diseases are caused by heritable mutations in genes
which produce mutant proteins. Mutant proteins are proteins encoded by a gene with
alterations in its DNA sequence. Thus, when constructing a protein out of this DNA
sequence, it can lead to missing or malformed proteins, which causes diseases. More
explanation on mutations is given in Chapter 2. Two examples of diseases caused by
mutations include sickle-cell anemia and cystic fibrosis. Sickle-cell anemia is the cause
of a mutation in the gene for hemoglobin, a protein responsible for transporting oxy-
gen in the blood. This causes red blood cells to distort into a sickle shape and clogging
capillaries which leads to cut-offs of blood circulation. On the other hand, cystic fibro-
sis is a disease that causes build-ups of mucus in the lungs, pancreas, and other organs
which leads to the clogging of airways, respiratory failure, and prevention of the break-
down of food and absorption of nutrients [The Tech Museum of Innovation, 2018].

Today, we can learn quite a bit about human diseases directly from humans,
though how much we are able to learn is limited. For example, researchers can
learn more about diseases by giving out surveys to people who have a certain type
of disease and figuring out how they feel, if they experience any restrictions with
their type of disease, etc., but even with these answers, researchers have to be aware
of the possibility that answers are not 100% accurate. Or, an experimentation can

occur where there is a control group and an experimentation group: say a group of
people with a certain disease who are not taking medications versus another group of
people with that same disease who are taking a type of medicine. This can determine
whether or not the medication helps people in any way. Still, these types of responses
can vary from person to person. So, there is only so much researchers can learn about
diseases in this way without going against any ethical values. Therefore, more concrete
experimentation must occur to really study the origin, symptoms, and possible cures
of diseases. This leads to experimentation on model organisms.

Because humans are so genetically different and there are so many variables to
account for when studying the human population, researchers have begun to rely
on model organisms. Model organisms are a group of organisms that aid in the
understanding of biology in humans. More specifically, their genetic make-up is well-
known to researchers, and they have similar biology compared to humans. Examples
of some model organisms used throughout research includes fruit flies, mice, and
zebrafish
[National Institute of General Medical Sciences (NIGMS), 2017].

The theory of evolution, made prominent by Charles Darwin, states that organ-
isms change over time because of changes made in heritable physical or behavioral
traits. Therefore, genes in animals are evolutionarily conserved. This means that al-
though related, they are not identical in sequence across species. As a result, proteins
encoded by related genes are similar and perform similar functions generally; however,
subtle differences in the structure and function of the proteins may exist [Than, 2018].

/——/ Exonis \
—{

—

Introns

Figure 1: Exons and Introns

source: https://www.pinterest.com/pin/235031674278137353/%autologin=true

One type of experimentation that has begun to pick up in recent years are ex-
periments run by directly injecting a gene’s coding sequence (CDS) with a mutation
that causes a disease into a test organism, or model organism. A gene is a portion of

DNA sequence which includes exons and introns as shown in Figure 1.

A CDS represents the exons of a gene which are the DNA sequences that code for
a particular protein. Thus, exons code for a protein whereas introns are intervening
non-coding regions which play no important functional role at this time. Mutations
within exons (the CDS) are often the basis of human disease. Reseachers can inject
a mutated CDS into a test organism as a way to study the disease.

Human disease research relies on being able to manipulate genes in non-human
organisms and recent technological advances has made this process less cumbersome
and time-intensive. It is now possible to insert human genes into non-human organ-
isms and study their effects. Ideally, the best approach to 'humanizing’ a gene is to
make the fewest changes possible and only within exon regions of a gene.

Because the technology to conduct these biological studies is so new, Biologists
humanize genes manually because no automated tool exists. The length of genes can
range from hundreds to thousands of nucleotide base pairs. If done manually, it is
inevitable that researchers have to humanize each nucleotide in a DNA sequence, one
by one. Such a process is, both, time consuming and prone to errors. At RIC, Dr.
Stilwell has adopted the manual technique of humanizing genes used in the industry.

The National Center for Biotechnology Information (NCBI) contains a large DNA
database and bioinformatic tools to access and analyze genomic information. Biol-
ogists access and analyze DNA through a GUI interface which limits the available
tools. In part, the 'humanizer’ utilizes some of the existing algorithms including
the Basic Local Alignment Search Tool (BLAST). Within BLAST exists sub-tools:
BLASTP, BLASTN, BLASTX, TBLASTN, and TBLASTX. Each sub-tool focuses
on a different purpose, but the one used in the Humanizer is BLASTX.

The first step in humanizing a gene by hand is to first search for the protein
sequence of the model organism and gene the user wishes to humanize. This is done
by entering in the organism’s name and gene name into the protein database search
provided within the NCBI website. A number of results may appear and it is up to
the user to decide which record they wish to use. Then, the user retrieves a protein
sequence for the gene within humans by using the BLASTP tool, also provided on
the NCBI website. This requires a query sequence, which is the sequence retrieved
earlier from the protein database. This sequence gets put into the BLASTP search
along with an optional parameter to limit the search within humans only. In this
case, the user would enter in ’homo sapiens’ into the optional 'organism’ text box in
the GUI interface.

After the researcher retrieves the two protein sequences the researcher can obtain
the DNA sequence of the gene within the model organism. This is done by entering
in the name of the organism and the name of the gene directly into the nucleotide
database within the NCBI website. A number of results may appear and it is up to
the user to select the record they want.

Now, the user can perform an alignment on the two protein sequences, meaning
compare and modify them to make them more comparable. This requires the use of

a pairwise alignment tool. Dr. Stilwell uses a pairwise alignment tool called Emboss
Water, provided in a separate website. The user pastes in the protein sequence of
each organism into the GUI interface for alignment. Once the protein sequences are
aligned, differences between the model organism and human sequences are identi-
fied and displayed to the user where changes have been made and where there are
discrepancies between the amino acids of both sequences.

Going back to the NCBI website, the user obtains a DNA sequence of the model
organism and gene from the nucleotide database. This step is similar to how the user
obtains a protein sequence: by entering in the organism’s name and gene name into
the nucleotide database. A number of results may appear and it is up to the user to
decide which record they wish to use.

Then, using the nucleotide sequence retrieved from the nucleotide database, the
user will run it in another tool to obtain the correct reading frame of the DNA
sequence. Dr. Stilwell uses a tool called Emboss Transeq, also provided in the same
website as Emboss Water. This tool takes a DNA sequence, inputted directly by the
user, and translates it into six possible reading frames. Three (3) reading frames from
reading the DNA sequence from the begining to the end of the sequence, and then
again in reverse, from the end of the sequence to the begining. More information
about what reading frames are is provided in Section 3.1. Emboss Transeq returnes
the six possible reading frames to the user and the result that matches the protein
sequence retrieved from the protein database from NCBI in step one determines the
correct reading frame.

Finally, now that the user has an alignment of the two protein sequences for
comparison and the DNA sequence that codes for the model organism’s protein se-
quence, the user can now manually make changes to the DNA sequence nucleotide by
nucleotide.

Drosophila melanogaster [gbinv]: 42417 CDS's (21945319 codons)

fields: [triplet] [frequency: per thousand] ([number])

UUU 13.2(289916) UCU 7.8(154186) UAU 1@.8(236811) UGU 5.4(1180888)
UUC 21.8(479372) UCC 19.6(429341) UAC 18.4(483675) UGC 13.2(288853)
UUA 4.5(97715) UCA 7.8(171695) UAA ©.8(17807) UGA ©.5(10767)
UUG 16.1(353621) UCG 16.6(365159) UAG ©.7(14362) UGG 9.9(217518)

CUU 9.8(196787) CCU 6.9(151856) CAU 1@.8(236061) CGU 8.8(192276)
CUC 13.8(303153) CCC 18.1(396168) CAC 16.2(354699) CGC 18.0(395106)
CUA 8.2(18036@) CCA 13.5(297671) CAA 15.6(342415) CGA 8.4(185119)
CUG 38.2(839127) CCG 15.8(347286) CAG 36.1(792657) CGG 8.2(180473)

©a

AUU 16.6(363497) ACU 9.5(208889) AAU 21.8(460669) AGU 11.5(252555)
AUC 22.9(502821) ACC 21.3(467509) AAC 26.2(575297) AGC 20.4(447808)
AUA 9.5(208315) ACA 11.8(241893) AAA 17.9(372524) AGA 5.1(112784)
AUG 23.6(518200) ACG 14.4(315479) AAG 39.5(866968) AGG 6.3(137902)

i

GUU 11.8(240735) GCU 14.4(315879) GAU 27.6(60473@) GGU 13.3(291161)
GUC 13.9(304893) GCC 33.6(736394) GAC 24.6(540386) GGC 26.7(587016)
GUA 6.4(139476) GCA 12.8(280181) GAA 21.1(462468) GGA 18.8(395377)
GUG 27.8(609794) GCG 14.8(307977) GAG 42.5(933622) GGG 4.7(102708)

Figure 2: Codon Bias: Drosophila Melanogaster (Fruit Fly)

source: http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=7227

To humanize a gene by hand requires the usage of a codon bias table. An example
of this is shown in Figure 2. More information about this is provided in Section 3.1.
To get this though, users would have to look up the model organism’s codon bias
online. Using this information, amino acid by amino acid, the user will see where
there is a discrepancy between the two protein sequences. If the amino acids in the
same position of both sequences do not match, a change must occur. For example,
let’s say the amino acid in position five (5) of the model organism’s protein sequence
is 'L, and the amino acid in position (5) for the human protein sequence is 'A’. The
user will have to look at the codon bias of the model organism and find out what three
(3) nucleotides code for the amino acid "A’. Then, the user changes the nucleotide
bases in the DNA sequence, of the model organism, that coded for 'L’ and changes
that to the nucleotide bases that code for ’A’. This occurs until the user reaches the
end of the two protein sequences.

The humanized gene is crucial, but such a technique is both tedious and prone to
mistakes, as you can probably tell, which can lead to inaccurate results. Researchers

also spend a great deal of time humanizing genes when they can be experimenting
and researching. In addition, for different test organisms, a different humanized form
is required regardless if it is intended for the same gene or not. This also results in
repeated work being done.

In Dr. Stilwell’s lab, the genetics research team has been studying a disease
called Amyotrophic Lateral Sclerosis (ALS). ALS is a disease that causes nerve cells
to break down which weakens the muscles and reduces muscle functionality. This
causes symptoms such as muscle twitching, also known as fasciculations, muscle
cramps and weakness, and difficulty with chewing or swallowing. As time passes,
the symptoms only get worse. It is estimated that between 14,000 - 15,000 Ameri-
cans have ALS, but there is no cure for it yet, only treatments to control its symp-
toms. There are two types of ALS: Sporadic ALS and Familial ALS. The major-
ity of people with this disease have sporadic ALS, meaning the disease may have
occurred randomly with no family history of the disease. Only 5%-10% of people
with ALS are diagnosed with familial ALS, which means the individual inherited
the disease from their parents. In the case of familial ALS, it has been identi-
fied by scientists from the National Institute of Neurological Disorders and Stroke
(NINDS) that some familial ALS cases were associated with a mutation in the SOD1
gene. It is still unclear how this mutation led to the degeneration of motor neurons
[National Institute of Neurological Disorders and Stroke (NINDS), 2013].

ALS is just one of many diseases that we still know very little about. Therefore, the
need to find out more about diseases and how to cure them is a top priority for many
researchers in this field.

In the remainder of this thesis, I will describe some of the biological terms, concepts
and tools needed to understand the purpose and goals of the program. Secondly, I
will go over the modules that were integrated to complete the application. Then,
discussions of implementation will proceed. After that, testing will follow suit. And
lastly, the conclusion and future work section will end the thesis.

2 Background and Related Work

2.1 Understanding the biology

Before developing this tool, there are some biology terms and concepts that I needed
to learn and understand to develop this application.

Deoxyribonucleic acid (DNA) is a chain of nucleotides carrying genetic informa-
tion. It is made up of two strands that are twisted together to form a helix. Each
strand is a sequence of genes, and each gene is a sequence of nucleotides. One of the
most important construction pieces of nucleotides are their nitrogenous bases.

There are four (4) types of nitrogenous bases found in DNA strands: adenine (A),
cytosine (C), guanine (G), and thymine (T). Each strand contains the complementary
genetic information of the other strand. In DNA, adenine pairs with thymine, and

cytosine pairs with guanine. Therefore, if one of the DNA strands contain bases
"CAGGTA’, then the other strand should carry its complementary bases 'GTCCAT’
|Genetics, Education, Discovery (GeneEd), 2018].

Genes are passed down by parents to children, and as stated earlier, they carry the
instructions needed to assemble proteins. Proteins are large macromolecules that are
major structural and functional components of cells. Each protein is constructed by
a chain of amino acids, and an amino acid is the construction of three (3) nitrogenous
bases. These three (3) nitrogenous bases are also called a codon.

second base in codon

T C A

G

TIT Phe TCT Ser T
TTC Phe TCC Ser C
T TCA Ser TAA siop TGA stop A
TCG Ser TAG stop [IGERIEEN G
S CCT Pro T 5
° CCCPro - cC o
o C CCAPro CAA Gin A S
= CCGPro CAG Gin G o
a ACT Thr AAT Asn AGT Ser T o
p ACCThr AAC Asn AGCSer ¢ 2
s A ACA Thr AAA Lys A S
ACG Thr AAG Lys - G
GCT Ala GAT Asp T
GCCAla GAC Asp c
G GCA Ala GAA Glu A
GCGAla GAG Glu G

Figure 3: Codon to Amino Acid Table

source: https://www.chemguide.co.uk/organicprops/aminoacids/dnaj.html

There are twenty-two (22) different types of amino acids that can be constructed
but only twenty (20) main ones are in use. Although it may seem that there should be

7

sixty-four (64) different amino acids, it is important to know that there exists more
than one way to construct a single amino acid. This is seen in Figure 3. In Figure 3,
Valine (Val) can be assembled from the nitrogenous bases 'GTT’, 'GTC’, 'GTA’, or
'GTG’. Hence, there also exists a concept known as codon bias' where every type of
organism has a preferred construction of each amino acid in their DNA.2 This concept
will be very important to the completion of the Humanizer. More information about
this topic will be given in Chapter 3 and Chapter 4.

In Figure 3, to figure out which amino acid is created by each codon, find its first
nitrogenous base on the left hand side. Then follow that row across until you find its
second nitrogenous base, which is sorted by columns. Finally, you are left with four
options, each with a different third nitrogenous base. The amino acid that is created
by that codon will be listed in its abbreviated form to the codon’s right. Let’s say
we are looking for the amino acid made from the codon ’CCT". Its first nitrogenous
base is 'C’, so we will look at the second row. The next nitrogenous base is also 'C’.
Therefore, we will stop at the second column of that row. The last nitrogenous base
is a "T", which is listed as the first codon within that section. Thus, the codon 'CCT’
codes for the amino acid Proline (Pro). This figure also contains codons that code
for 'start’ and ’'stop’ codons. This is available because within genes exist an open
reading frame. This open reading frame is actually where the instruction that code
for a protein begins and ends. A gene does not typically contain only instructions
that code for the protein. For a protein to be built, another protein called a promoter
will read through the gene until it finds this 'start’ codon to begin constructing the
protein. It will know when to stop coding for the protein when it reads a ’stop’ codon.
In Figure 3, the codon ’ATG’ which codes for Methionine (Met) is the start codon,
and the codons "TAA’, "TAG’, and "TGA’ codes for a stop codon [Pevsner, 2015].

As a result of three (3) nitrogenous bases, a codon, coding for one (1) amino acid,
and a chain of amino acids constructing a protein, if a nitrogenous base is switched out
with another nitrogenous base, there is a huge chance that different amino acid will be
constructed. In addition, imagine if there is an insertion of an extra nitrogenous base,
a deletion of a nitrogenous base. This means the amino acid construction from that
instance and ongoing will all be disrupted. This alteration of the nucleotide sequence
will end up altering the composition of the protein. If more than one amino acid is
changed, the construction of the whole protein will be flawed. This is what scientists
call a mutation. Thus, the constructed protein may not perform as it should which
may also lead to diseases [The Tech Museum of Innovation, 2018].

LCodon bias is based on research done among a mass of DNA sequences from organisms to
determine the most frequently used construction of each amino acid.

2This does not go to say that there does not exist a less frequently used codon within an organism’s
DNA.

2.2 Learning BioPython

To learn BioPython, the most useful tool was the online documentation found on
BioPython’s website [Chang et al., 2017]. This documentation provided information
on some of the main modules supported, and examples of how to use them. I thought
this documentation was best at providing a good foundation of BioPython. It was
also fairly easy to follow for beginners.

When the information provided in the BioPython website was not enough, I found
the Application Programming Interface (API) documentation helpful
[International Association of Developers, 2017]. This document defines each of the
Python objects within BioPython more specifically. A separate example for each
explanation is provided and further links are provided as well to learn even more
about each module. Because this API documentation includes so many other links,
I think this was most helpful in understanding how to use the required modules.
Using this documentation in combination with the source code for BioPython, I was
able to understand what parameters were required, why they were required, optional
parameters, return values, among other things.

2.3 Related bioinformatics tools

BLAST is a program that uses rigorous statistics to score sequences. The scores
reveals related sequences present in the same organism or different organisms to show
how closely related each result is to the query sequence. BLAST takes an input
query sequence, and performs a pairwise alignment between the given sequence and
a database. A pairwise alignment is an alignment of two sequences which determines
their relatedness at a sequence level. So, all search results from a BLAST search are
either highly related to the query sequence or marginally related. Related sequences
may be homologous and have common functions.

The BLAST algorithm consists of three (3) phases: list, scan, and extend. The
first phase of the algorithm compiles a list of words of a specific size. In protein
searches, the default size of word pairs is three (3). These words are generated
directly from the query sequence. For example, let’s say the query sequence includes
the following amino acid sequence "KVNALTVWG”. Thus, the word pairs of size
three (3) would be '"KVN’, "VNA’, '"NAL’, "ALT”, 'LTV’, "TVW’, and "VWG'. Then,
with each word generated from the sequence, a list of similar words are produced. A
couple of similar words that would be produced for the word '"KVN’ would be '"KVL’,
'KVA’, '"KTN’, and "WVN’. Because there are twenty (20) different amino acids and
each word size is three (3), then there are 8000 possible words. A threshold value,
T, is established for the score of aligned words. If the threshold value is raised, the
BLAST search takes less time, but the user will receive less results. These results
will not include distantly related database matches. Thus, the opposite would occur
if the threshold value is lowered. BLOSUMG62, a common scoring matrices for amino
acids, is used to score each pair of similar words. So, if any words from the list of

similar words are equal to or greater than the threshold value, then that word moves
on to the next stage in the BLAST algorithm. If any words from the list of similar
words are less than the threshold value, they are not pursued any longer.

The next phase in the blast algorithm is the scan stage. A scan of the database
for word pairs that matches the pairs of similar words that had passed the threshold
value from the previous step is executed. In the example above, let’s assume that
from the list of similar word pairs the words '"KVA’ and "KTN’ passed the threshold
value T. Then, in this step, a scan of the protein database for sequences containing
the words "KVA’ or ’TKTN’ is performed. Notice that these word pairs are not exact:
compare 'KVA’ and '"KTN’ to the word from the query sequence 'KVN’. This idea
of incorporating a threshold allows the BLAST search to return exact sequences and
non-exact but similar sequences. So, when a ’hit’ is found, this is called a ’hit’. Each
"hit” is then extended for the rest of the sequence before and after the word match
using gaps to create an alignment. During extension, a score is calculated using some
sort of scoring matrices like BLOSUMG62. The extension continues as long as the score
continues to increase. Once it drops to a critical amount, this is called a ”dropoft”, and
the ’hit’” is no longer pursued. Meanwhile, any "hit” whose score exceeds a particular
cutoff score, S, is known as a high-scoring segment pair (HSP) and it returned as
a BLAST result. During extension, to increase efficiency, insertions, deletions, and
mismatches are not accounted for. This leads up to the third phase.

The last phase is a trace-back of the ’hit’ sequence to locate insertions, deletions,
and mismatches between the ’hit” and the query sequence that were not saved earlier.

There are five different BLAST algorithms, but the one used in this application
is called BLASTX. BLASTX takes a DNA sequence and translates it into protein
sequences using all the different reading frames. More information about reading
frames will be provided in Section 3.1. After translating the DNA sequence, it then
takes the protein sequences and performs a pairwise alignment against the protein
database. This alignment determines the protein sequence record that is encoded by
the DNA sequence.

The sequence inputted into the BLAST search in Figure 16 is the non-human
DNA sequence record. It is translated into three (3) different protein sequences, and
then taking those sequences a pairwise alignment is done against the protein database
for the record that represents each sequence. The default database in BLASTX is the
non-redundant (nr) database which contains sequences from Genbank, Protein Data
Bank (PDB), SwissProt, PIR, and other data banks supported by NCBI. In total,
there is approximately 65 million protein sequences in the non-redundant database.
Therefore, it is important to keep in mind that when using the BLAST tool, it can
take as long as a few seconds to a couple of hours.

Each record that has any sort of relationship with the DNA sequence will be
returned in the results, and each record will have a score and an expect threshold value
(E-value). Scores are attained by a scoring scheme which describes the relatedness
between the query and each database hit. Scores are calculated from scoring matrices.

10

In this application BLOSUMG62 is used. The greater the score, the more aligned it is
with the DNA sequence. The E-value represents the number of alignments, within
the search, whose scores are equal to or greater than its score that are expected to
occur in a database search only by chance. This gives an estimate of the number of
false positive results received from the search; the lower the E-value, the lower the
probability that the sequence had occurred by chance. Because the score and E-value
are inversely related, the higher the score, the lower the E-value [Pevsner, 2015].

3 Design

3.1 System Architecture

Get test organism
name and gene from
user

Retrieve possible test
organism DNA
sequences

Get user’s choice of

test organism’s DINA
sequence

Codon_Bias DB.txt

Retrieve the test
organism’s protein
sequence

Retrieve possible human i
protein sequences of the
Ba OISl gemey The Humanizer

(Application) Nucleotide DB

‘Get user’s choice of
human protein
sequence

Align the test organism
and human protein
sequences

Perform a 3-frame trans-
lation of the test organ-
ism’s DNA sequence

Determine the open read-
ing frame of the test organ-
ism’s DNA sequence

Humanize the gene

Figure 4: Architecture Diagram

As seen in Figure 4, there are fifteen (15) modules that make up the Humanizer,
some that were written for this project and some external modules that needed to be
integrated with it.

The Humanizer, itself, has ten (10) modules that perform the following tasks, in
sequence:

11

The

Get desired test organism name and gene from the user

Retrieve possible test organism DNA sequences

Get user’s choice of test organism’s DNA sequence

Retrieve the test organism’s protein sequence

Retrieve possible human protein sequences of the same gene

Get user’s choice of human protein sequence

Align the test organism and human protein sequences

Perform a three-frame translation of the DNA sequence

Determine the open reading frame of the DNA sequence

Humanize the gene

Humanizer (Application)This module contains the code for the whole appli-
cation, and integrates all the following modules together.

The Humanizer first prompts the user with the name of the model organ-
ism, or test organism, and the name of the gene which the user wishes to
humanize. This information gets stored into the program for later usage
throughout the application.

Using the name of the test organism and gene, given by the user in the
previous module, as parameters, the Humanizer connects to ENTREZ (ex-
plained in further detail below) and searches for DNA sequences that meet
the parameters.

A maximum of twenty (20) entries will be shown to the user. The entry
with the highest scores will show first. At this point, it is up to the user to
determine which record to use as the DNA sequence. It is important that
the user makes this decision rather than the application because it would
be near impossible to physically identify exactly what the user needs.

Once the DNA sequence is selected, this selected record is used to find the
protein sequence that is most related to it. In other words, the protein
sequence that is encoded by the DNA sequence. This is performed in the
BLAST tool.

The DNA sequence is put into a BLAST search again to find records of
protein sequences within humans, for the same gene. There may be more
than one result because any record that is even slightly related to the DNA
sequence will be returned. A maximum of twenty (20) entries will be shown
to the user. Records with the highest scores populating first.

12

e It is now up to the user, again, to determine which record to use as the
protein sequence for humans of the same gene. It is important that the
user makes this decision rather than the application because it would be
near impossible to physically identify exactly what the user needs.

e This step requires the alignment of the two protein sequences, the test
organism’s protein sequence and the human’s protein sequence. The se-
quences are compared, one amino acid at a time, and aligned to ensure
they are of equal length. Gaps are added into the sequences at this time
for any sequences lacking an amino acid compared to the other sequence.

e A three-frame translation is then performed on the DNA sequence. The
segment of DNA sequence acquired does not always begin with a complete
codon. This step is required for the program to define where to start
reading the DNA sequence. More information on this step is explained in
Chapter 4.

e The open reading frame of a DNA sequence is the segment of instructions
that actually code for the protein. As mentioned in Chapter 2 about
the start and stop codons, the start and stop codon will determine where
the instructions begin and end. Thus, this module reads each codon in
the DNA sequence with the help of the reading frame, acquired in the
previous module, to determine the coding region of the protein. The rest
of the DNA sequence is ignored by the program, and this open reading
frame becomes the new DNA sequence.

e Finally, using the two protein sequences, the application compares each
amino acid, one by one. When it finds any discrepancies between the amino
acids, a change in codon, in the newly updated dna sequence, occurs. More
details on this step is provided in Chapter 4

CodonBiasDB.txt The Codon Bias Database is a file that contains the codon bias of
all twenty (20) amino acids for numerous test organisms. During humanization
of a gene, this module keeps the test organism’s DNA sequence as close to its
original as possible by allowing the system to take into account the most popular
codon that codes for each amino acid. This is determined by looking at every
gene in the genome, the complete set of genes in an organism, and determining
which codon was used the most for every amino acid.

Within the application, when the protein sequences of both the test organism
and humans are determined, each amino acid making up that protein is com-
pared. Any differences between the amino acids, of the two sequences, that
require a change in DNA with the test organism’s protein sequence will look
into this codon file. The application will search for the discrepant amino acid
of the human protein sequence, find the codon bias for that amino acid for the

13

test organism, and then make the necessary changes to the test organism’s DNA
sequence.

End-users must maintain this file for the most accurate results. Only the in-
dividual users will know for certain what types of test organisms are used in
their labs. Thus, if a test organism is being used and is not already included
in the text file, it is of the responsibility of the user to ensure its information
is entered in. Instructions of how to include and format the data is provided
in the text file itself. Any test organism whose codon bias information is not
documented in this file will result in the termination of the application, as this
file is an integral part in humanizing genes.

ENTREZ To build the Humanizer, I had to make it work with several external modules
provided by the National Center for Biotechnology Information (NCBI). NCBI
is a huge resource that allows access to, not only genomic information, but also
to tools that can turn the information retrieved from its databases into infor-
mation that can be used to humanize genes. Some of the databases supported
by NCBI includes the Gene database, Protein database, Nucleotide database,
and PubMed. NCBI also supports a tool known as the Basic Local Alignment
Search Tool (BLAST). Within BLAST exists sub-tools: BLASTP, BLASTN,
BLASTX, TBLASTN, and TBLASTX. Each sub-tool has a different purpose.

Entrez is an integrated search engine used by NCBI to retrieve data from its
many supported databases. Specifically, with connection to ENTREZ, the Hu-
manizer can access databases such as the nucleotide database and modules such
as ENTREZ’s search, summary, and fetch modules. These modules allow the
Humanizer access to do numerous things with the results generated from the
search.

Nucleotide DB Entrez allows the application to connect to the Nucleotide Database
which can retrieve nucleotide sequences, the complete strand of individual ni-
trogenous bases constructing a protein, or DNA sequence. Entrez inputs the
name of an organism and the name of a gene into the database. In our case, the
name of the test organism and the name of the gene we are researching would
be entered.

Entrez then returns a list of records that match the input, back to the applica-
tion. There may be more than one response, because all results that are only
partially similar will also be returned. These results are then formatted and
shown to the user, who will then select the record they wish to use.

BLASTX This module translates DNA sequences into protein sequences, and then
compares them to other sequences in the protein database. This reveals related
sequences present in the same organism or different organisms.

14

3.2 User interface design

For now, the Humanizer has a simple text-based command-line interface. Be-
cause of time constraints, my main priority was to ensure the usability and
accuracy of the program before focusing on the cosmetics of the program. As
a result, development of a more visual-friendly user interface will have to be
delayed to future work.

4 Implementation

The Humanizer is completely written in Python, a high-level scripting language,
along with the addition of the BioPython library. Although I have experience
with Python from a previous course, there were still some things that needed
to be learned to develop this program. In addition, BioPython was new to me
so I experienced a learning curve with this library also. BioPython provides
various tools which allow an application to connect to the National Center for
Biological Information’s ENTREZ search engine (described below) and gather
biological information. Currently, the Humanizer is being executed through the
python shell.

The Humanizer takes the DNA sequence, retrieved from the Nucleotide DB
search, and runs it through BLASTX two times. First, with the Nucleotide DB
result, the DNA sequence, and the test organism’s name. This will translate the
DNA sequence into multiple protein sequences, and save the sequence with the
best match as the protein sequence for the test organism. The second BLAST
will include the same Nucleotide DB result as a parameter, but will be run
against Homo Sapiens, humans, instead of the test organism as in the previous
BLAST. This will result in a protein sequence match of the same gene within
humans. BLASTX will return a list of records with the matches, it will be
formatted and shown to the user, who will then choose the match they wish to
use. The selected record will now be known as the protein sequence of the test
gene in humans.

These two protein sequences are required for comparison for the gene undergoing
testing. Now, with the two protein sequences, an alignment is done to ensure
the every amino acid from both strands are aligned. This is done by adding
gaps into the sequence where there is a lacking amino acid.

Next, a 3-frame translation is done to the DNA sequence to find the correct
reading frame of the strand. This step leads to the determination of the open
reading frame within the DNA strand. Once this is completed, humanization
can finally occur.

Further details and an explanation of each step is provided in the next section.

15

4.1 A Step-by-Step Walkthrough

Text File

R

User Input

Python + BioPythen 2D Array of Codon Bias i
The o | ¢ c0don_bias list Test Organism:
>) Gene

Humanizer o eodon bias 20 st
o codon bias list oOtest_organism otest_gene
Ji -
i %LAST)S:: Nouh BLPAS'LXS User Input Entrez Nucleotide DB
o e - poteln Beduence DNA Record $ search_nucleotide_sequence
¢ blastx_nucleotide seq list < ¢ blastx_nucleotide seq fetch seq - -
& ferch_se: { ferch_se Qietch_seq | nucleotide_esummary
== _sed onucleotide result index o tucleotide results
o human_proten_seq O protemn_seq -

3-Frame Translation
O query
User Input o target
- Aligning Protein Sequences
Human Protein Record gnng 9 L)
. o alignments = | o translated dna
Qfetch seq -
3 o alignments_output o frame O get_amino_acid_index
oselection result index
. 0 non_human_organism {protein) O temp_score § codon_bias_2D_list
ohuman_protein_seq » - - L
o human_organism {protem}) o modified_dna_seq

o amino_acid_index

o length

|

KEY Open Reading Frame
oo . 0 find_dna_from_reading frame /
o Variables o standard_table

o start_codon

________________ o stop_codon

Figure 5: The Humanizer: Implementation Flow Chart

Figure 5 shows a complete flow chart of the implementation of the Humanizer.
All modules from the design Section 3.1 are also included, as well as all the
methods that are called within each module and the lower-level variables that

appear in each.

16

Organize » Open Share with = Burn Mew folder
 Favorites Name : Date modified Type Size i
B Desktop | numpy.random.mtrand.pyd 4/20/2018 11:01 AM PYD File 683 KB
6 Downloads || pyexpat.pyd 4/16/2018 7:29 PM PYD File 186 KB
] Recent Places | python36.dll 4/16/2018 7:29 PM Application extens... 3,519KE
%] pythoncom36.dIl 4/20/2018 11:01 AM Application extens... 541 KB
B3 Libraries %] pywintypes36.dIl 4/20/2018 11:01 AM Application extens... 135KB
G Documents || select.pyd 4/16/2018 7:29 PM PYD File 20 KB
J’ Music %] sqlite3.dIl 4/20/2018 11:01 AM Application extens... 1119KE
) Pictures 1%| telgbt.dil 4/20/2018 11:01 AM Application extens... 1,627 KB
B Videos l! TheHumanizer 4/20/2018 2:54 PM Application 4133 KB
|| TheHumanizer.exe.manifest 4/20/2018 2:55 PM MANIFEST File 2KB
18 Computer %] thBat.dll 4/20/2018 11:01 AM Application extens... 1,920 KB
& Local Disk (C) | ucrtbase.dll 4/16/2018 7:29 PM Application extens... 978 KB
o KINGSTON (E || unicodedata.pyd 4/16/2018 7:29 PM PYD File 878 KB
% VCRUNTIMEL40.dlI 4/16/2018 7:29 PM Application extens... 86 KB
G-_ Network || win32api.pyd 4/20/2018 11:01 AM PYD File 129 KB i
|| win32com.shell.shell.pyd 4/20/2018 11:01 AM PYD File 499 KB
|| win32pdh.pyd 4/20/2018 11:01 AM PYD File 33KB L
|| win32trace.pyd 4/20/2018 11:01 AM PYD File 22 KB 3
|| win32ui.pyd 4/20/2018 11:01 AM PYD File 1,398 KB
|| win32wnet.pyd 4/20/2018 11:01 AM PYD File 35KB - |
g TheHumanizer Date modified: 4/20/2018 2:54 PM Date created: 4/24/2018 9:26 AM
Application Size: 403 MB

Figure 6: The Humanizer: Finding the Executable Application

To run the Humanizer, after successful installation, first the user locates and
opens the "TheHumanizer’ folder. This folder contains all the files necessary
to run the humanizer. Next, the user runs the 'TheHumanizer’ executable
application found within the opened folder. This is shown in Figure 6.

17

File Edit Format View Help

Title: Codon_Bias_DB

~

Description: This text file will contain the codon bias of all organisms whose gene(s) will be humanized. This data is required to humanize genes by referring to the codon bias of each
particular protein of a specified organism. Codon bias for organisms must be manually entered in to this file!

Codon Bias Database: http://www.kazusa.or.jp/codon/

3
Instructions:

To add a new organism and its codon bias, please follow the steps below.

#H There are 20 main proteins:

1. Alanine Ala A
2. Arginine Arg R
3. Asparagine Asn N
4. Aspartic Acid Asp D
5. Cysteine cys c
6. Glutamic Acid Glu E
7. Glutamine Gln Q
#H 8. Glycine Gly G
9. Histidine His H
10. Isoleucine Ile b
Ll 11. Leucine Leu L
12. Lysine Lys K
13. Methionine Met L
14. Phenylalanine Phe F
15. Proline Pro P
Ll 16. Serine Ser s
17. Threonine Thr T
18. Tryptophan Trp]
19. Tyrosine Tyr Y
20. Valine val v
#

Proteins that are not included due to them only being re
1. Hydroxyproline Hyp

#H 2. Pyroglutamatic Glp u
##

1. Each organism requires three (3) lines

Number of the organism (starting from one (1))

ferred to in extremely rare cases:
o

Latin name of the organism (use lower-case letters)

Codon bias of each protein in the order specified above. Seperate each codon with a comma (,) and encase the whole line in brackets ([1).
#H

e.g 1

#H Drosophila Melanogaster

[GCC, CGC, AAC, GAC, TGC, GAG, CAG, GGC, CAC, ATC, CTG, AAG, ATG, TTC, CCC, TCC, ACC, TGG, TAC, GTG]

##

Drosophila Melanogaster
[Gce, €GC, AAC, GAC, TGC, GAG, CAG, GGC, CAC, ATC, CTG, AAG, ATG, TTC, CCC, TCC, ACC, TGG, TAC, GTG]

Figure 7: Codon Bias Database: Instruction

WARNINGS :

1. This file is required for the program to work. This file is referred to when humanizing the test organism's gene.

2. If an organism and its complete codon bias is not included in this file, the program will NOT WORK.

Please make sure the organism whose gene you are humanizing is included in this file.

3. Each organism and its codon bias MUST be written exactly as explained in the instructions. Otherwise, the program will NOT WORK.
4. If a codon is written incorrectly, results may be inaccurate.

Please ensure the data is entered in precisely.

3 5. Any modifications to this file will hinder the program from working correctly, unless it is also edited in the program source code.

drosophila melanogaster

[6cc, cGC, AAC, GAC, TGC, GAG, CAG, GGC, CAC,

2
mus musculus

[GCC, €GG, AAC, GAC, TGC, GAG, CAG, GGC, CAC,

3
danio rerio

[GCT, AGA, AAC, GAC, TGT, GAG, CAG, GGA, CAC,

a
xenopus laevis

[GCT, AGA, AAU, GAT, TGT, GAA, CAG, GGA, CAT,

5
caenorhabditis elegans

[GCT, AGA, AAT, GAT, TGT, GAA, CAA, GGA, CAT,

6
rattus rattus

[GCC, CGC, AAC, GAC, TGC, GAG, CAG, GGC, CAC,

7
saccharomyces cerevisiae

[GCT, CGT, AAT, GAT, TGT, GAA, CAA, GGT, CAT,

ATC, CT6,

ATC, TG,

ATC, TG,

ATT, TG,

ATT, CTT,

ATC, TG,

ATA, TTG,

ARG,

AAG,

AAG,

AnA,

AAA,

AAG,

AAA,

ATG,

ATG,

ATG,

ATG,

ATG,

ATG,

ATG,

TTC,

TIC,

TTC,

T,

TTC,

TIC,

T,

cce,

cet,

ccT,

cea,

cca,

cec,

cca,

Tce,

AGC,

AGC,

AGC,

AGT,

AGC,

AGT,

Acc,

Acc,

AcA,

AcA,

AcA,

Acc,

ACT,

TGG,

66,

TGG,

66,

TGG,

66,

TGG,

TAC, GTG]

TAC, GTG]

TAC, GTG]

TAT, GTG]

TAT, GTT]

TAC, GTG]

TAT, GTT]

Figure 8: Codon Bias Database: Elements in database

As soon as the user runs the program, the application loads the codon bias
database by opening up the “Codon_Bias_DB.txt” file and storing its data into

18

the program. This allows the application to use the information stored in the
database. As seen in Figure 7, the

Codon_Bias_DB.txt file first contains some meta-data about the file itself: its
title, a description of what sort of data it holds, a reference link, and instructions
on how to add to the database. Because this database requires maintenance
from its users, instructions are necessary to keep the database formatted in
the way it is read into the application. The text file’s main purpose is to
contain the name of a variety of test organisms, along with their codon bias
of each of the main twenty (20) amino acids for each organism. Thus, after
the instructions include an example of how each entry should look like, as well
as some warning points to be aware of. These warning points emphasis the
importance of the format each element in the database should follow. Figure 8,
which is a continuation of Figure 7, shows some elements that are already in
the database. As mentioned in the set of instructions, each element makes up a
total of three (3) rows. The first row of each element is numbered, in numerical
order, of which it appears in the database. The next row contains the name
of the test organism, or non-human organism. The last row contains the list
of codons that are favored by the organism for each of the twenty (20) amino
acids.

The Humanizer reads in information from the text file line by line. It keeps
track of the test organisms in the Codon_bias_DB.txt file by storing their names
in a list called the Codon_Bias_Directory. To do this, the application uses each
records first line to indicate where to store the organism’s name, which is given
in the following line, in the codon_bias_directory. Then, it reads the next line,
a long string of all the codon biases for that organism, and stores them in the
codon bias table, codon_bias 2D list. This repeats until the end of the file is
reached. The codon_bias_list method is used primarily for this purpose. This
process allows the program to verify whether a codon bias for a user-given test
organism is provided before it continues further, and also allows the Humanizer
to look up the row number in which a particular organism’s information is
stored.

19

Codon_Bias 2D List

0 1 2 .. 18 19
0 A R N ... Y V
1 GCC CGC AAC . TAC GTG
2 GCC CGG AAC ... TAC GTG
3 GCT AGA AAC .. TAC GTG

Codon_Bias Directory

0

1 drosophila melanogaster
2 mus musculus

7 saccharomyces cerevisiae

Figure 9: Codon_Bias 2D List and Codon_Bias_Directory

Next, behind the scenes, the Humanizer generates a 2D-list of the codon bias
table. The first row of the array is a list of the twenty (20) amino acids in
their single-letter abbreviated form. The following rows each correspond to a
different test organism. Each cell contains the codon bias for its row organism
and amino-acid column. It also generates a separate list of the organism’s
names, where the location of each name is the same as the number of the row
in which that organism’s information is stored in the codon bias 2D-list. This
list is called the codon_bias_directory. Examples of both lists are shown in
Figure 9. This figure shows that the test organism ’drosophila melanogaster’ is
located in index one (1) of the codon bias directory. Thus, in row one (1) of the
codon bias 2D list, shows the codon bias of each amino acid within the model
organism drosophila melanogaster. For amino acid Alanine (A), drosophila
melanogaster’s codon bias is 'GCC’, for Arginine (R) its codon bias is 'CGC’,
and so forth. A complete list of the full names of each amino acid and their
one-letter abbreviation is provided in the ’Codon_Bias_DB.txt’ file.

20

< | C\Python27\python.exe = O P

Welcome to the Humanizer!

(lhat is the latin name of your test organism?

Figure 10: Welcome Greeting

' | CA\Python27\python.exe = O X

Welcome to the Humanizer!

What is the latin name of your test organism? Dros Mel

Figure 11: Test Organism Error

After the application loads the database into its memory, it then greets the user.
This is the first thing the user sees. Displayed in Figure 10, the user is welcomed,
and then the Humanizer immediately asks for the name of the test organism
whose gene the user will be humanizing. Although it is not case-sensitive, the
name must be spelled exactly how it appears in the ”Codon_Bias_DB.txt” file.
If not, the user will receive an error message as seen in Figure 11.This message
will end the program after advising the user to check that the database is up to
date and accurate.

After creating the 2D-list of the codon bias table, and the codon bias directory
list, the program welcomes the user and asks for the Latin name of the test
organism along with the name of the gene undergoing testing. It is at this time
that, after input, the program checks in the codon bias directory to make sure
the organism’s codon bias is in the codon bias database. If it does, the program
continues onto the next step. If not, an error message is displayed to the user,
and the program ends.

21

< | C\Python27\python.exe = O x

[lelcome to the Humanizer!

the latin name of your
the biological name of the

Figure 12: Test Organism and Gene

< Select C:\Python27\python.exe — O X

= to the Humaniz

the latin name

Figure 13: Entrez Search

Next, the application will prompt the user for the name of the biological gene,
which the user will be humanizing. An example of this screen is shown in Fig-
ure 12. After the user successfully enters in both of these fields, the Humanizer
now searches for DNA sequences that match the organism and gene which the
user had entered, as shown in Figure 13.

22

What is the latin name of yvour test o
What 1s the bio

inted kelow along with an IMDEX number of

Figure 14: Entrez Results

The program queries for this search with NCBI’s ENTREZ tool which includes
multiple modules for performing certain tasks. Using the ’search’ module. This
module allows for the application to make a search through any databases sup-
ported by NCBI. In this application, and in this search specifically, the query is
bounded to the nucleotide database since we are looking for a DNA sequence.
The method search_nucleotide_seq allows the program to perform this task. It
uses the user-inputted organism and gene as parameters to search for DNA
sequences that match the query.

Then, using the 'summary’ module, ENTREZ allows the program to extract
certain information found in each result to display to the user. This is done in
the method nucleotide_esummary. Results are sorted with the best match first.
Only the top twenty (20) entries will be displayed. A maximum has been set
because of the high possibility that thousands of results may be returned. The
number of results will be shown immediately after the search has completed,
and the results will follow, shown in Figure 14 presents. An index is included
with each search result for identification purposes within this application only.
The following row of each result is a unique ID tag that identifies its record,
while the next row includes various identifiers each result goes by within various
NCBI databases. The fourth row is the name/description of each result, while
the last row shows how many nucleotide bases long the gene is.

23

de dismutas

Type in the INDEX of the DMNA record you want: 11

Figure 15: Select Test-Organism DNA Sequence Record

After all the results are displayed, the next step prompts the user to carefully
examine the results and choose the result that best match their needs. The user
is prompted for the index of the record they wish to humanize. NCBI allows
records to be manually added in by their users, thus, duplicates and errors
are a possibility within the databases. Therefore, at this point, the expertise
of the user is required to carefully identify and select a result that suits their
needs. In Figure 15, record 11 is selected as the DNA sequence that will undergo
humanization.

24

< | C\Python27\python.exe = O X

in the INDEX of the DNA rec you want: 11

Returning non-human DNA sequence record for result id: 11

u-Zn superoxide dismutase e, complete cds

o featur
ATGGTGGTT GGCACGGTTTTC...TAA", Sing

SEQUENCE RECORD:

ide dismutase 1, isoform A [Drosophila melanogaster]

/SGEVCGLAKGLHGFHVHEFGDNTN. . .AKV', Sing

Figure 16: BLASTing to Retrieve Test-Organism Protein Sequence

Once the DNA sequence is selected, it’s index is used in the method fetch seq to
grab the record’s data, including its personal identification tag. The application
returns this result, once again, to the user as a confirmation of what the user has
chosen. In Figure 16, the record’s ID, name, description, number of features,
and a portion of the sequence appears. This returned format is called FASTA, a
commonly used sequence format. Having the record formatted in FASTA allows
it to be recognized as a sequence, and then used throughout the program.

The FASTA record is first put to use through the two BLASTX searches that
follow. In the first BLAST search, the program runs the DNA sequence against
the same test organism to get a complementary protein sequence for that test
organism. In other words, this BLAST process determines the protein sequence
record that is encoded by the DNA sequence selected earlier. The method
blastz_nucleotide_seq will perform this task and return the first result, which is

also the result with the closest match, to the user. Figure 16 shows this first
BLAST result.

The sequence inputted into the BLAST search in Figure 16 is the non-human
DNA sequence record. It is first translated into three (3) different protein
sequences, one for each reading frame, which will be explained further in this
section, and then taking those sequences a pairwise alignment is done against

25

the protein database for the protein sequence that represents each sequence.
The default database in BLASTX is the non-redundant (nr) database which
contains sequences from Genbank, Protein Data Bank (PDB), SwissProt, PIR,
and other data banks supported by NCBI. In total, there is approximately
65 million protein sequences in the non-redundant database. Therefore, it is
important to keep in mind that when using the BLAST tool, it can take as long
as a few seconds to a couple of hours.

As the BLAST search concludes, only one record is displayed to the user: the
first record, the record with the best score. Therefore, it concludes that the
record shown in Figure 16 will represent the translated DNA sequence, the
protein sequence of the test organism.

n INDEX number of

¥ BLAST RESULTS #

(twenty} entries »

oxide Dismutase

WIAGS LEGL TEGLHGFHYWH. . . LA . :_'-j_lll_-|1:_'Ll_'|_ Ler -1,]_L:||-_ betl })]

Cu-Zn] [Homo sapiens]

GSIKGLTEGLHGFHVHEFGDM. . . IAQ", SinglelLetterAlphabet())

Figure 17: BLASTing to Retrieve Human Protein Sequence

The second BLASTX search is performed right after the test organism’s protein
sequence is retrieved. The program is BLASTing the test organism’s DNA
sequence again, but this time it is limiting the search to protein sequences
found in humans (homo sapiens) only. This limitation falls under one of the

26

many optional parameters allowed in a BLAST search. In the previous BLAST
search, there were no organism limitation, thus the program only looked for
protein sequences related to the DNA sequence within its own organism, the
given test organism. A different method, blastz_nucleotide_seq list will provide
the user the results as a list. Having the results shown as a list will allow the
user to choose the result they prefer because a number of records related to the
DNA sequence will appear to the user as shown in Figure 17. The results, like
in Figure 16, are returned in FASTA format using the method fetch_seq which
connects to the fetch module in ENTREZ. A maximum of twenty (20) results
will be displayed to the user. This maximum has been set because of the high
possibility that thousands of results may be returned. Remember that the most
likely aligned sequences are shown first.

~ | CAPython2T\python.exe - O fi

Zla Chain &, 1 Superoxide Dismutase

VOGIINFEQKESHEPYEVIHGS IKGVTEGLHGFHVHEFGDNT . . . IAD", Singleletteralphabet(l))

KGLTEGLHGFHVHEFGDNT . . .TAQ", SingleletterAlphabet())

Type in the INDEX of the record you want: 3

Figure 18: Select Human Protein Sequence Record

After all the results are displayed, the user runs upon another inquiry which asks
for the index of the human protein sequence they wish to use. Like the process
that occurred in Figure 14 and Figure 15, an index number is included in the
results for easier identification of each record. Again, this step would require
the expertise of the user to identify and select the record that best meets their
needs. In Figure 18, index 3 is inputted. Once the program receives the input,
it prints out the record again to the screen in FASTA format using the method
fetch_seq. This can be seen in the top half of Figure 18. At the end of these
two blast algorithms, the program will have a DNA and protein sequence for
the user-given gene in the user-given organism, as well as the protein sequence
for the user-given gene in humans.

27

<, Select C\Python27\python.exe = jm} X

Type in the INDEX of the you want: 3

urning human protein sequ for result id: 3

Alphabet())

LAKGLHGFHVHEFGDNTN HFNPYGK| HLGDL GNIEATGDN
FHTELEL T T [1111 LHTHTTTT

KDEERHVGDLGNVTADI

Figure 19: Aligning Protein Sequences

Now that the application has the protein sequence of the test organism and
the protein sequence of homo sapiens, for the same gene, the program performs
another pairwise alignment but with the two protein sequences. This means
that each amino acid that constructs the proteins will be compared individually.
Although the two sequences are theoretically related, they may not be of the
same length so each amino acid that makes up the protein may not be aligned
in the correct position compared to the other protein sequence. When this
is the case, the pairwise alignment done in this instance inserts dashes into
the sequence, called gaps. Gaps are added to sequences when an extra amino
acids are found in the other protein sequence it is being aligned with. The
gaps show that in that position an amino acid is not present when compared
to the other protein sequence. As you can see in Figure 19, the top sequence,
the test organism’s protein sequence, has two consecutive gaps, whereas the
bottom sequence, the human protein sequence, has two amino acids in that
same position. This means that the human protein sequence has two additional
amino acid at this location that is not present in the test organism’s sequence.
The vertical lines between the two sequences shows the alignment of each amino
acid in the two sequences. There is also a score that shows how related the two
sequences are to each other.

The pairwise alignment, in this case, is performed by a pairwise alignment
module defined in BioPython, called pairwise2. Both sequences are inputted
into the method. The program does not use BLAST for this pairwise alignment
because BLAST typically performs pairwise alignments with given sequences
against databases. In this case, we have two sequences to compare and align.

After the two protein sequences are aligned, they should be of the same length
and each amino acid should be aligned with the help of gaps. Moving away
from the protein sequences now, we look back at the DNA sequence that was
acquired in Figure 16.

28

Reading frame #1

5'-IAGUICUU“ACCIGCAIUUGIUGGl-3'

Ser--Leu--Thr--Ala--Leu-Ser

Reading frame #2
5'-AIG-UCIUUAICCGICAU|UGU|GG-3'

Val--Leu--Pro--His--Cys

Reading frame #3
5'-AGIUCUIUAC"CG CIAUUIGUGIG-3'
Ser--Tyr--Arg--lle--Val

Figure 20: 3-Frame Translation

source: https://classes.engineering.wustl.edu/csel131/extensions/frame.jpg

After aligning the two sequences, the program performs a 3-frame translation
on the DNA sequence acquired previously for the test organism. As stated prior
about the construction of a codon, three (3) nucleotide bases code for an amino
acid, and groups of amino acids create a protein. The gene provides instructions
on how to create the protein which includes the individual nucleotides that code
for it. Unfortunately, the DNA sequence acquired in Figure 16 does not always
begin with a full codon. In other words, because a codon consists of three
(3) nucleotide bases the DNA sequence from the ENTREZ search could have
returned the DNA sequence starting with a full codon, at the second position
of a codon, or even the last position of a codon. This totals up to three (3)
different reading frames as seen in Figure 20. Therefore, a 3-frame translation
is required to determine how the DNA sequence should be read.

Thus, the next step in the program is to determine which reading frame is the
most accurate. The program uses a loop that runs three times, and basically
reads the DNA sequence with a different starting point each time, either from
the very beginning, from the second position, or the third position. Each time,
it translates the whole DNA sequence. This gives us three (3) different pro-

29

tein sequences which are then put into a pairwise alignment, pairwise2, with
the protein sequence acquired from Figure 16, the first blast result. Pairwise2
returns a score of each comparison, and the pair that returns the highest score
is concluded as the correct reading frame.

With the correct reading frame determined, we now need to detect where in
the DNA sequence the instructions for the protein begins and ends, because
unfortunately the DNA sequence also does not begin at the start of the coding
region. This is called the open reading frame. The DNA sequence can have
nucleotide bases before the instructions begin and after the instructions end,
both of which are not needed for humanization. In addition to the codons that
code for amino acids, there are also codons that determine the start of a coding
region and the end of a coding region. These are called start and stop codons.
In Figure 3, the start codon that codes for Methionine (Met) is ATG’, and
the stop codons are marked as ’stop’ in red. With this information, we can go
through each codon in the DNA strand and find the one that codes for the start
codon. All the codons before the start codon can then be extracted since we
have no need for them. Also, keep in mind that we have the protein sequence
which includes all the amino acids that code for the protein, thus we can get
the length of the protein sequence and use it to determine the end of the DNA
strand.

alt_name="'SGCB"', id=1,

table={
‘ITr': ‘', 'TTC': 'F', 'TTA": 'L', 'TTG': 'L', 'TCT': 'S"',
‘Tcc': 's', 'TcA': 's', 'TCg': 's', 'TAT': 'Y', 'TAc': 'y',
'TGT': 'C', 'TGC': 'C', 'TGG"': 'W', 'CTT': 'L', 'CTC': "L',
‘cta': ‘L', '‘crGg': ‘L', ‘ccT': 'PY, 'CCC': 'P', 'CCA': 'P',
'‘ccg': 'P', 'CAT': 'H', "CAC': 'H', 'CAA': 'Q', 'CAG': 'Q',
'CGT': 'R', 'CGC': 'R', "CGA': 'R', 'CGG': 'R', "ATT': 'I',
'ATC': 'TI', 'ATA': 'I', "ATG"': 'M', "ACT': 'T', 'ACC': 'T",
"ACA': 'T', 'ACG': 'T", "AAT': 'N', "AAC': 'N', 'AAA': "K',
"AAG': 'K', 'AGT': 'S', "AGC': 's', 'AGA': 'R', '"AGG': 'R",
'GTT': 'Vv', 'GTC': 'V', "GTA': 'V¥', 'GTG': 'V', 'GCT': "A",
'GeC': ‘A", 'GCA': 'A', 'GCG': 'A', 'GAT': 'D', 'GAC': 'D',
'GAA': 'E', 'GAG': 'E', 'GGT': 'G', 'GGC': 'G', 'GGA': 'G',

"GeG": &', J.
stop_codons=['TAA', "TAG', 'TGA'],
start codons=['TTG', 'CTG', 'ATG'])

Figure 21: BioPython: Codon Table

source:
http:/ /biopython.org/DIST/docs/api/Bio.Data. CodonTable-pysrc.html

30

The program calls the find_DNA_from_reading_frame method to find the start
and stop codons in the DNA strand. Then it extracts the codons that are not
required. In BioPython, there are built in codon tables like the one shown in
Figure 3. This codon table is shown in figure 21. This provides the program
with lists of start and stop codons which tells the program what to look out
for in the DNA sequence reading. As seen in Figure 21, there exists three (3)
different start codons: "TTG’, "CTG’, and "ATG’. Though, since it is rare for
genes to have a start codon other than "ATG’, the Humanizer will only look for
the start codon ’ATG’ in DNA sequences. The list of start and stop codon gets
sent as a parameter into the find_DNA_from_reading_frame method, as well as
the reading frame indicator.

First, the method looks for a start codon by reading the DNA sequence in
its correct reading frame and comparing it the start codon parameter. After
finding the start codon in the DNA strand, all codons prior are extracted and
the program now seeks for the stop codon by going through each subsequent
codon. While doing so, it also keeps a count of how many codons it has looped
through, until it finds a stop codon. Because there are three possible stop
codons, the program will compare each codon in the DNA strand to the three
(3) options until there is a match. When there is a match, the program will also
make sure the count it kept track of earlier matches the length of the protein
sequence. Once the stop codon is found, all codons that follow will also be
extracted.

By this time, we will have an updated DNA sequence of only its open reading
frame. This updated DNA sequence is stored in a variable called 'new_dna_seq’
in the Humanizer. Now, we can finally humanize the gene!

Position 1 2 (3 (415 6 [7
Non-human DNA Sequence
(test organism) ATGGTTCGCAGATTTCCC|_-
Non-human Protein Sequence M v R R | F P -
(test organism)
Human Protein Sequence M v P - F P K
l 3 2

Figure 22: The humanizing process

31

Finally, taking the two protein sequences, the Humanizer compares each indi-
vidual amino acid of both sequences at each position until it reaches the ends
of the sequences. Only when the application notices a discrepancy between the
amino acids will it make any changes to the DNA sequence updated earlier,
‘new_dna_seq’. These forthcoming changes to 'new_dna_seq’ will be saved in
a new variable called 'modified_dna_seq’. The 'modified_dna_seq’ variable will
represent the humanized DNA sequence. It starts off empty and fills up as
codons are appended to it.

If amino acids in the test organism sequence and the amino acid sequence match,
the codon that codes for the amino acid of the test organism will be appended
to the variable ‘'modified_dna_seq’.

If the amino acid in the test organism sequence and the amino acid in the human
sequence do not match, like in Figure 22 highlighted in red and marked 1, the
application will change the codon in the DNA sequence and make it code for
the amino acid found in the human sequence at that location. This is where
the data from the ”Codon_ Bias_ DB” comes in.

In Figure 22, the non-human protein sequence has a 'R’, for Arginine, and
the human protein sequence has a 'P’, for Proline, in position 3. The applica-
tion then calls the get_amino_acid_index method and puts the amino acid P’
(Proline) in the parameter. It then finds the row of the test organism in the
"Codon_Bias_DB” list, that stores the test organism’s codon bias metadata,
and grab the codon bias that codes for amino acid 'P’ (Proline). An image of
the ”Codon_Bias_DB” list from Figure 8, shows that the row for test organ-
ism Drosophila Melanogaster is the first row. The test organism, Drosophila
Melanogaster’s, codon bias for Proline (P) is "CCC’. Thus, instead of the codon
"CGC’ that codes for Arginine (R) being added to the 'modified_dna seq’ vari-
able, its codon bias for Proline (P), ’'CCC’, will be appended.

If the non-human organism has a gap as highlighted in Figure 22 and marked
2, the program will append the codon that the non-human organism favors for
the amino acid 'K’; Lysine, found in the human protein sequence at that same
position. It does this by calling the get_amino_acid_index method, goes into the
correct row in the

Codon_Bias_DB table, and finding the codon bias for Lysine (K).

Lastly, if the human protein sequence is the sequence with a gap in any of its po-
sitions, marked 3 in Figure 22, nothing will be appended to 'modified_dna_seq’.
We only want to add to the DNA sequence if something is missing or the amino
acids do not match. Other than that, we will not be appending any codons to
the humanized sequence.

Although there is more than one way to construct many of the amino acids,
we keep to the organism’s codon bias, the preferred codon, that codes for the

32

amino acid in the case the chemical properties present in the codon is required
for the organism’s natural bodily functions or prevents it. Because, as stated
earlier, we do not want to disrupt any organism’s natural way of functioning.

< | C\Python27\python.exe = O X

sk a4 o oo o oK S SR R SR S SR SR SR SR SR S R SR R SR K SR K SR SR K R K R SR R R R R R R R O R R R

Figure 23: Returns Humanized DNA Sequence and Prompts to Save Sequence

< | C\Python27\python.exe = O X

CCTGACCGAGGGTCTGCACGGATTCCACGTC GAGTTCGGTC CGCCGELT

GCATGGCGGCCCCAAGGACGAGGAGCGTCACGTGGGCGATCTGGGCAACGTGACCGCC
CCGGTGACCACAGCATCATCGGACGCACCCTGGTCGTGEC GAA|

Figure 24: Saving results in a text file on user’s desktop

33

< | C\Python27\python.exe = O X

TH(TGHHGGGFGHTGGF(GTGCAGGGCATCAT TTCGAACAGAAGGA|

The result ha
Thank you for

Figure 25: End of Program

This humanizing step continues until the program reaches the end of the protein
sequences. Once that is completed, the gene has been humanized and the user
sees a screen similar to that shown in Figure 23. The name of the test organism
and the gene, both given by the user at the beginning of the program, and the
humanized DNA sequence are all printed to the screen. In addition, the user
sees the last prompt of the program, seen in Figure 23. The user has a choice
of saving the results into a text file. If the user enters 'N’, for no, the program
immediately ends after printing out a farewell. If the user enter "Y', for yes, the
user is asked to type in the name of the text file they wish to save the results
in. In Figure 24, ’testing’ is entered. Finally, the program tells the user that
the file has been saved to their desktop, prints out a farewell, and the program
ends, shown in Figure 25.

testing.txt - Notepad = (m} x
File Edit Format View Help
Test Oorganism: Drosophila Melanogaster
Gene: SOD
Humanized DNA SEQUENCE:
ATGGCCACCAAAGCTGTCGCCGTACTGAAGGGCGATGGCCCCGTGCAGGGCATCATCAACT TCGAACAGAAGGAGAGCAACGGCCCCGTGAAGGTCTGGGGTTCCATCAAGGGCCTGACCGAGGGTCTGCACG
GATTCCACGTOCACGAGTTCEETGACAACACCGLCOGCTECACCTCGGCLGEACCGCACTTCAATCCGLTGTCCCGCAAGCATGECGGELCCCAAGGACGAGGAGCGTCACGTGGGCGATCTGLGCAACGTGAC
CGCCGACMGGACGGCGTGGC(GACGT(.TCCATCGAGGACT(.CGTGATTTCCCTCTCCGGTGACCACAGCA‘I’CATCGGACGCACCCTGGTCGTGCACGAGMGGCCG&TGATCTTGGCMGGGTGGMACGAq
GAGAGCACCAAGACGGGCAACGCTGGTTCCCGCCTGRCCTGCGGCGTTATTGGCATTGCCCAGGTC

Figure 26: Text file of saved results

When the user goes to their desktop, the text file would have been saved with
the name the user had inputted. If the file does not already exist, the program

34

will create that file for the user, if it does exist, the file will be saved over the
previous file. Figure 26 shows the record that was saved which includes the
name of the test organism, the name of the gene, and the humanized DNA
sequence.

5 Testing

5.1 Functional testing

Dr. Stilwell and I ran the Humanizer using three sets of different organisms and genes
to ensure the functionality of each module within the system. Although its interface
is quite simple, at this moment, for its users, its functionality is more important.

i C:\Users\KIOS sktop\TheHumanizerkThe Humanizer.exe

llelcome to the Humanizer? o

What is the latin name of your test organism? drosophila melanogaster
What is the hiological name of the gene you are testing? sod

Searching for the DHA sequence for gene ’sod’ for test organism
‘drosophila melanogaster’ ...

Results: 14

m

The results are printed below along with an INDEX number of each result.

INDER: 1
ID: 671162317
giib?1162317 iref INT_A37436.41 6711623171

Drosophila melanogaster chromosome 3L
Length: 28118227

INDE®: 2

ID: 671162315
gii671162315 iref INT_B33778 . 416711623151
Drozophila melanogaster chromosome 2R
Length: 25286936

INDER: 3

ID: 665481444
giib65401444 iref iINM_B01299574 .11 [665401444 1
[y O 2 me oo = = g 2 d o : B = ul®

Figure 27: Automatic Nucleotide Search with the Humanizer: finding the test organ-
ism’s DNA sequence

35

;j NCBI Resources ¥/ How To (¥ Sign in to NCBI

Nucleotide

Species
Animals (12)
Customize

Molecule types
genomic DNA/RNA (7)
mRNA (5)

Customize

Source databases
INSDC (GenBank) ()
RefSeq (6)
Customize

Sequence length
Custom range.

Release date
Custom range.

Revision date
Custom range...

Clear all

Show additional filtters

Summary ~ 20 per page ~ Sort by Default order ~

Nucleotide v ‘(Drosoph\\a Melanogaster[Organism]) AND SOD[Gene Name]|

|

Create alert Advanced

Items: 14

Dr ila mel ter chromosome 3L

28,110,227 bp linear DNA

Accession: NT_037436.4 GI: 671162317

Assembly BioProject BioSample Protein PubMed Taxonomy

GenBank FASTA Graphics

Dr ila mel ter chromosome 2R

- 25,286,936 bp linear DNA

Accession: NT_033778 4 GI- 671162315
Assembly BioProject BioSample Protein PubMed Taxonomy

GenBank FASTA Graphics

>

Drosophila melanogaster superoxide dismutase 2 (Mn), transcript variant B (Sod2), mRN.

- 1,015 bp linear mRNA

Accession: NM_001299574.1 G- 665401444
BioProject BioSample Protein PubMed Taxonomy

GenBank FASTA Graphics

Send to: »

Help

Filters: Manage Filters

Results by taxon

Top Organisms [Tree]
Drosophila melanogaster (72)
synthetic construct (2)

Analyze these sequences
Run BLAST

Find related data
Database: | Select v

Search details

"Drosophila melancgaster”[Organism] AND
S0D[Gene Name]

Dr ila mel ter superoxide dismutase 2 (Mn), transcript variant A (Sod2), mRNA

884 bp linear mRNA Pl
Accession: NM_057577.4 Gl: 665401443

BioProject BioSample Protein PubMed Taxonomy, Search See more

GenBank FASTA Graphics

Drosophila mel; ster superoxide dismutase 1, transcript variant D (Sod1), mRNA Recent activity

Figure 28: Manual Nucleotide Search: finding the test organism’s DNA sequence

One of the tests we ran uses the model organism ’drosophila melanogaster’, also
known as fruit flies, and the gene ’SOD’ which is the gene that causes ALS and also
the gene Dr. Stilwell is currently studying.

First, as discussed in Section 4.1, we entered the name of the test organism that
will host the humanized gene, and the name of the gene we are studying. Thus,
we entered in 'Drosophila Melanogaster’ and ’SOD’ respectively. This query is then
searched against NCBI’s nucleotide database through ENTREZ, and we got the same
fourteen (14) results as we did if we performed this step by hand. Figure 27 show
the results from the Humanizer application which performed this automatically, and
Figure 28 show the results from the manual NCBI nucleotide search, which we also
ran.

36

A CA\Users\KIOS sktop\TheHumanizer\TheHumanizer.exe
Type in the INDEX of the DMA record you want: 11

Returning non—human DMA zequence record for result id:- 11

MOM-HUMAN DMA SEQUENCE RECORD:
ID: M24421.1
Mame = M24421 .1
M24421 .1 Drosophila melanogaster Cu—Zn superoxide dismutase (S0D) g
ene,. complete cds
Mumber of features: A
Segd’ ATGGTGGT TAAAGCT GTCTGCGTAATTAACGGCGATGCCAAGGGCACGGTTTIC. . .TAA' . SingleLetter
Alphabet{>)

EaEalaiatadatataiatatatatatotatatadalodaiataiaotatatiatodaiatototatodateiaiatatotatedataioiadatotatotataiataisiotstatadalaistsioiastatotiatetakatotad

s BLASTING MON-HUMAM DHA SEQG TO RETRIEUVE HON-HUMAM PROTEIN SEQ s

MON_HUMAN PROTEIN SEQUENCE RECORD:

ID: HP_476735.1

Mame = NP_476735.1

Desgriptinn: NPF_476735%.1 superoxide dismutase 1, isoform A [Drosophila melanogas
ter

Mumber of features:

SeqC* MUDKAUCUINGDAKGTUFFEQESSGT PUKUS GEUCGLAKGLHGFHUHEFGDNTH. . _.AKU* . SingleLetter
Alphabet (3>

Figure 29: Automatic BLASTX Search: finding the test organism’s protein sequence

‘Sequences producing significant alignments:
Select: All None Selected:0
i1 Alignments o

Max Total Query E

Ident Accession
score score cover value

Description

superoxide dismutase 1, isoform A [Drosophila 1 307 307 99% 7e-106 100% NP 4767351

Cu-Zn superoxide dismutase [Drosophila melanogaster] 305 305 99% 5e-105 99% CAA35210.1

RecName: Full=Superoxide dismutase [Cu-Zn] 303 303 99% 3e-104 99% QIU4X23

RecName: Full=Superoxide dismutase [Cu-Zn] 301 301 99% 2e-103 98% Q9U4X3.3

RecName: Full=Superoxide dismutase [Cu-Zn] 301 301 99% 4e-103 97% QOU4X53

Sod [Drosoj u 300 300 99% 7e-103 97%

Sod [Drosophila erecta] 299 299 99% 2e-102 97%

superoxide dismutase 1. isoform D [Drosophila melanoaaster 298 298 99% 4e-102 92%

Figure 30: Manual BLASTX Search: finding the test organism’s protein sequence

The next step, after we selected the nucleotide sequence we preferred, the first
BLAST search is done. We selected result number eleven (11). In the automatic
process with the Humanizer, the best result, which is also the first result, has an
ID of 'NP_476735.1", as seen in Figure 29. In the manual process, the first result in
Figure 30 also displays the same record whose ID is 'NP_476735.1°, after we BLASTed
record number 11.

37

B CilUsers\KIOSK10\Desktop\TheHumanizerTheHumanizer.cxe (AR [l i

e BLASTING MOM-HUMAN DHA SEQ TO RETRIEVE HUMAN PROTEIN SEQ e

Result=: 5@

The results are printed below along with an INDEX number of each result.
s BLAST RESULTE sewesess

Only 28 entrieszs will he printed helow.

INDE®: 1

ID: pdhiZZKY A

Mame = pdbhi2ZKY A

Description: pdbi2ZKEY A Chain A, 1 Superoxide Dismutasze [cu—=znl

Mumber of features: A

SeqgC’ GPLGEMAT KAUCULKGDGPUQGI IMNFEQKESHNGPUKUWGS I KGLTEGLHGFHUH. . . IAQ* . SingleLetter
Alphahet (>

Length: 1264

NP_B83445 .1
Mame : NP_BB@445 .1
Description: NP IBB445 1 zuperoxide dismutase [Cu—Znl] [Homo sapiens]
Mumber of features:
Seq('MHTHHUCULHGDGPUQGIINFEQHESHGPUHUUGSIHGLTEGLHGFHUHEFGDN...IHQ' SingleLetter

Figure 31: Automatic BLASTX Search with the Humanizer: finding the human
protein sequence

‘Sequences producing significant alignments:
Select: All None Selected:0
i1 Alignments o

Max Total Query E

Description
score score cover value

Ident Accession

stal Structure Of Human Cu-Zn Superoxide Dismutase Mutant G93a 186 186 98% 26-60 61%

186 186 98% 3e60 61%
utant Of Human Superoxide Dismutase, C6a, C111s 186 186 98% 3e-60 61

ain F,_Structure Of Metal Loaded Pathogenic Sod1 Mutant G93a 185 185 97% 5e60 61%

184 184 97% 9e-60 61

184 184 97% 1e-59 61% 3

Figure 32: Manual BLASTX Search: finding the human protein sequence

Then the second BLAST search is performed. This comparison is limited to the
gene within the organism homo sapiens as mentioned in Section 4.1. The automatic
process had a total of fifty (50) results, despite only showing twenty (20). We com-
pared the first couple of results from the automatic process, seen in Figure 31, to the
results from the manual process in Figure 32. You can see that the results are the
same by comparing the ID’s from Figure 31 to the accession numbers in Figure 31.
Since the results were the same for both processes, we moved on to the next step.

38

Figure 33: Automatic humanized form: includes protein sequences alignment, 3-frame
translation, and determination of the open reading frame

Sequences producing significant alignments:
Select: All None Selected:0

i Alignments 5
M: Total
Description Max | Total Query

Ident ~ Accession
score score cover value

Crystal Structure Of Human Cu-Zn Superoxide Dismutase Mutant G93a 310 310

99% 3e-109 100% 2ZKY

308 308 99% 8e-109 99% N

308 308 98% 1e-108 100% 3GZP A

308 308 98% 1e-108 100% 3GZO A

Figure 34: Manual humanized form: reverse check with BLASTX against homo sapi-
ens

We then selected a human protein record. In the Humanizer, after this step is
performed, an alignment is instantly done to the two protein sequences, followed by
the determination of the open reading frame in the test organism’s DNA sequence.
Lastly, humanization of the gene is done and returned to the user. Figure 33 shows
the results we received at the end of this process: we had selected the first record,
whose ID is 'pdb—2ZKY—A’, as our human protein sequence. The humanized form
relies heavily on the accuracy of the protein alignments and the identification of
the open reading frame. So, to make sure all this is correct, we manually ran the
humanized result retrieved from the Humanizer into BLASTX while limiting the

39

search to only homo sapiens. This will translate out humanized DNA sequence into
a protein sequence. If the humanized form is accurate, this should return a protein
sequence, within humans, that matches our humanized DNA sequence with 100%
accuracy. Indeed, Figure 34, which displays our BLASTX results, shows that the
first record has a 100% identity with our query sequence, the humanized form. In
fact, it is the exact protein sequence we had selected previously after the second
BLAST.

In addition to the organism ’Drosophila Melanogaster’ and 'SOD’, we ran tests
with 'Danio Rerio’ (zebrafish) and the gene ’'OPTN’, short for optineurin, and "Mus
Musculus’ (rat) with gene "TARDBP’. Similar results were obtained for both separate
test cases.

Thus, we have concluded that these tests supports our conclusion that the func-
tionality of the Humanizer is indeed accurate. From the tests we ran, we tested on
three (3) different model organisms and three (3) different genes. The DNA sequences
we chose ranged from hundreds to almost 3,000 base pairs, taking into consideration
the humanization of longer genes. Since the test cases were all random and expected
results were obtained, it must be safe to assume that the Humanizer will work for
any sequence users would choose in the future.

5.2 Usability testing

While the immediate users of the Humanizer, Dr. Stilwell and the members of his
lab, have tried this application and found it usable, before we publish this tool, we
intend to test it more systematically on a broader set of users. Accordingly, I have
completed the CITI training required by RIC’s Institutional Review Board (IRB),
and we plan to submit a proposal for a usability experiment on the Humanizer to the
IRB before the end of the semester.

6 Conclusions and Future Work

Developed using Python and the BioPython library, the Humanizer is able to connect
numerous sources together to humanize genes. The manual process normally requires
the usage of many different sources like searches within NCBI’s nucleotide and protein
databases, BLAST, and Emboss Water just to humanize a gene. In addition, the
manual process also requires the user to personally humanize the result at the end.
The amount of wait time and high possibility of errors from the common manual
process is greatly diminished with the development of this tool, making it a huge
stepping stone in the research and experimentation of human diseases on animal
models.

After completing this project, I realized I have come a long way to understand
the work the Humanizer must perform. A great bulk of my time with this project
required learning numerous biology concepts. Although I had a bit of understanding

40

from previous biology courses I had taken in the past, humanizing genes went into
much greater depth. In addition to biology concepts, I spent a lot of time learning
about the tools I needed the Humanizer to connect to. NCBI’s Entrez search tool
alone supports so many different features to query through all the databases supported
by NCBI. Not only that, but the results retrieved from these sources needed to be
understood too, in order for me to use them. The BLAST tool is another tool I had
to learn about, as well as its algorithms which allows it to perform such a useful task.
There were also many surprises along the way that forced me to learn even more about
biology. Then, I had to figure out how to translate that into the code. An example of
one of these surprises were the result of the addition of the 3-frame translation. When
I got to this part in the application, the results were not matching up. No matter
how I edited the code, it was still not coming up correctly. The reason was because
of a small piece of biology that I had overlooked. Aside from the biology, I found
that learning BioPython was a bit of a complication. Although the documentation
that came with it was easy to follow, especially for a beginner like me, it did not go
into as much depth as I had needed it too. One of the challenges were trying to find
other sources that would help me learn what I needed my program to do. There were
not many outside sources other than those found throughout its website and the API
documentation. Thus, I found myself going directly into the source code of BioPython
to see what was really happening behind the scenes. Overall, the development of the
Humanizer entailed learning from day one to the very end of the semester. While the
development of the Humanizer is reaching the end of its first run, I feel most proud
of all the biology I learned and using that to create an application that will be of use
to other people at our college, and hopefully even beyond that.

For future runs of the Humanizer, I would suggest other developers to first focus
on understanding the biology that is being demonstrated by the program already,
before building on it. Next, to build on this project, the developer must know the
tools that are used. Personally humanizing a gene by hand would really help with
the understanding of both of these, and show how the program works as well.

41

What we want
(Full DNA)

What we have i
(CDNA) Exon1 Exon 2 Exon 3

Intron
123 4 5 6 78 9101112 13 19 20 2122 23 24 2526 2728 29
Full DNA: AT GGCCACCAAGDG TGTGCGTGCTAG

CDNA: ATGGCCACCAAGGTGTGCGTGCTG

Intron

|
Humanized DNA: ATGGCCACCAAAGTCTGCGTACTG

(after running it through
the Humanizer)

Figure 35: Flowchart of next steps

From a biological point of view, an important update to the program should
include a step further after humanization. Humanization, which is explained in Sec-
tion 4.1, returns a humanized DNA sequence that only includes the exons of the gene,
the coding sequence (CDS). As stated in Chapter 1, there also exists introns that do
not code for proteins, but also hold a very important value. Although they do not
code for proteins, they may code for the functionality of the organism that without
it may cause complications. Figure 35 displays this concept and shows that the next
step of development should include the insertions of introns back into the genome.

Some other features a developer may want to pick up is adding a more user-
friendly interface to the program: adding a menu to show the user what types of
model organisms are in the codon_bias 2d_ list. This may also extend to allow the
user to enter in abbreviations of model organism names, or take away the option of
typing in the organism name altogether to avoid any errors. Another feature can be
to allow the program to show more than twenty (20) entries at a time after searching
through the nucleotide database for DNA sequences, or after BLAST searches. With
the help of developers and biologists, the Humanizer can reach places further than
Rhode Island College. Thus, I am excited and honored to have been able to present
the first development of the Humanizer, and I look forward to seeing where it leads.

42

References

[Chang et al., 2017] Chang, J., Chapman, B., Friedberg, 1., Hamelryck, T., de Hoon,
M., Cock, P., Antao, T., Talevich, E., and Wilezyski, B. (2017). Biopython tutorial
and cookbook. http://biopython.org/DIST/docs/tutorial/Tutorial.html.

[Genetics, Education, Discovery (GeneEd), 2018] Genetics, Education, Discovery
(GeneEd) (2018). Genetic code. https://geneed.nlm.nih.gov/topic_
subtopic.php?tid=15&sid=19.

[International Association of Developers, 2017| International Association of Develop-
ers (2017). Package bio. http://biopython.org/DIST/docs/api/Bio-module.
html.

[National Institute of General Medical Sciences (NIGMS), 2017] National Institute
of General Medical Sciences (NIGMS) (2017). Using research organisms to study
health and disease. https://www.nigms.nih.gov/Education/Pages/modelorg_
factsheet.aspx.

[National Institute of Neurological Disorders and Stroke (NINDS), 2013]
National Institute of Neurological Disorders and Stroke (NINDS)
(2013). Amyotrophic lateral sclerosis (als) fact sheet. https://www.
ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/
Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet.

[Pevsner, 2015] Pevsner, J. (2015). Bioinformatics and Functional Genomics. Wiley-
Blackwell, United Kingdom.

[Than, 2018] Than, K. (2018). What is darwin’s theory of evolution. https://www.
livescience.com/474-controversy-evolution-works.html.

[The Tech Museum of Innovation, 2018] The Tech Museum of Innovation (2018).
Mutations and disease. http://genetics.thetech.org/about-genetics/
mutations-and-disease.

43

http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=19
https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=19
http://biopython.org/DIST/docs/api/Bio-module.html
http://biopython.org/DIST/docs/api/Bio-module.html
https://www.nigms.nih.gov/Education/Pages/modelorg_factsheet.aspx
https://www.nigms.nih.gov/Education/Pages/modelorg_factsheet.aspx
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.livescience.com/474-controversy-evolution-works.html
https://www.livescience.com/474-controversy-evolution-works.html
http://genetics.thetech.org/about-genetics/mutations-and-disease
http://genetics.thetech.org/about-genetics/mutations-and-disease

A Program Code

:##]ﬁ{XEVWmMER Stacy Vang
DESCRIPTION:
This program will take a user—input biological organism
name and gene and run it against
the NCBI Nucleotide database to return a DNA sequence. The
resulting sequence is then BLASTed to
retrieve its Protein sequence, and then blasted again to
retrieve a Human Protein sequence. The program
then runs the Pairwise2 function from the BioPython
package to align the two protein sequences. A
3—frame translation is run to find the correct reading-—
frame for the test organism. All nucleotides
before the start codon (of the test organism nucleotide
sequence), and all nucleotides after the stop
codon is extracted. This results to the determination of
the open reading frame of the DNA sequence.
#4# The remaining nucleotide bases in the DNA sequence will be
modified. Any disimilarities
in amino acids between the test organism and the human
protein sequence will result in a change of
amino acids at the nucleotide level.
i
PURPOSE: The purpose of this program is to aid its users
in humanizing genes. The results of this
program will present the user with a humanized gene of the
user—inputted gene and organism.

anort Sys # Required to exit the program
import os # Required to get user’s environment
import Bio # Required to run Biopython Modules

SEE: http://biopython.org/DIST/docs/tutorial /Tutorial.pdf (
page 125/335, chap 9)

SEE: http://biopython.org/DIST/docs/tutorial/Tutorial.pdf (
page 72/335, chap 6)

44

from Bio import Entrez, SeqlO, AlignlO

SEE: http://biopython.org/DIST/docs/tutorial /Tutorial.pdf (
page 96/335, chap 7)

from Bio.Blast import NCBIWWW, NCBIXML

from Bio.Seq import translate

SEE: http://biopython.org/DIST/docs/tutorial/Tutorial.pdf (
page 94/335, sec 6.4.6)

from Bio import pairwise2

from Bio.SubsMat. MatrixInfo import blosum62

SEE: http://biopython.org/DIST/docs/tutorial/Tutorial.pdf (
page 30/335, sec 3.10)

from Bio.Data import CodonTable

Addmg global emall varlable accordlng to the ’NCBI’

Entrez User Requ1rements’

#REF http: //blopython org/DIST/docs/tutorlal/Tutorlal pdf (
page 126/335, sec 9.1)
Entrez.email = 7 gstilwell@ric .edu”

codon_bias_list Creates a list of
each organism (in the Codon_Bias_ DB file)’s set of codon
bias

search_nucleotide_seq Queries through the
NCBI Nucleotide Database for the user—given test organism
and gene

nucleotide _esummary Grabs detail
description of a particular sequence record from the NCBI
Database.

fetch_seq Fetches nucleotide/

protein sequence from the NCBI Nucleotide and Protein
Databases given the index/id of a record

blastx_nucleotide_seq Blasts the nucleotide
sequence of a user—given organism to get a Protein
Sequence

blastx_nucleotide_seq_list Blasts the nucleotide

45

sequence of a user—given organism to get Protein
Sequences from Homo Sapiens

find_DNA from_reading_frame Extracts the
nucleotides before the start codon and from the stop codon
beyond from the DNA

get_amino_acid_index Retrieve the index of
the amino acid abbr letter from the ’amino_acids_letter’
list that matches the amino acid given

export_results Export results into a
text file

def codon_bias_list (codon_bias_string):
RETURNS the list of each individual organism’s set of
codon bias.
Will eventually be appended into a 2D list.

’codon’ will temporarily store each codon(3 nucleotides

)

codon =

Declare the condon list wvariable

c_list = []

Starting at index 1, because index 0 is the 7[”
character that we do not need (see the ’
codon_bias_table.txt’ file for format)

Ending at (len(codon_bias_string)—1), because the last
character is ”7]” that we do not need (see the ’
codon_bias_table.txt’ file for format)

for i in range (1, (len(codon_bias_string)—1), 1):

If next element is a nucleotide, it is part of a
codon.
Store it in the codon STRING.
if (codon_bias_string[i].isalpha()):
codon = codon + codon_bias_string[i]
Every codon contains 3 nucleotides.
If the codon string contains 3 nucleotides ,
append it to the codon LIST.
if (len(codon) = 3):
c_list .append(codon)
Refresh the codon variable for the next
codon

999

46

def

def

9

codon =
If next element is not a nucleotide, append an
empty string to the list
This will act as a place—holder for the empty codon

bias
elif ((codon_bias_string[i] = 7,7) & (
codon_bias_string [i—2] = 7,7)):

c_list .append(” 7)
return c_list

search_nucleotide_seq (organism, gene):

99

RETURNS a list of records that match the query

9N

handle = Entrez.esearch(db = "nucleotide”, term =
organism + ”[Orgn] AND 7 + gene + ”[Gene]”)
record = Entrez.read (handle)

handle . close ()
return record

nucleotide_esummary (record_id):

9999

Prints the information of a particular record from the
Nucleotide DB.

This is needed to help end—users decide which Nucleotide
record they want to use

7N

handle = Entrez.esummary(db = "nucleotide”, id =
record_id)
record = Entrez.read (handle)

handle. close ()

Printing out the index: adding 1 so as not to confuse
users

print (7INDEX: ” + str(i + 1));

Grabbing record [0] because there is only one record

Prints the ID for emphasis

print ("ID: 7 + str(record [0]["Id"]));

Prints GI, Accession Version, among other
identification info

47

print (record[0][” Extra”]);

Prints record Title

print (record [0][” Title”]);

Printes record Length

print (”Length: ” + str(record [0][” Length”]));
print (7\n”);

def fetch_seq(database, index):
RETURNS the record as a SeqRecord; need this to translate
the dna later
handle = Entrez.efetch (db = database, id = index, rettype
= "fasta”)
results = SeqlO.read(handle, ”fasta”)
handle. close ()

return results

def blastx_nucleotide_seq(fasta_string , organism_query):

RETURNS the Protein Sequence for the appointed organism.
Results (50 entries MAX) are sorted in order by score.

Will return the 1st result (the one with the best match).

handle = NCBWWW. gblast (” blastx”, "nr”, fasta_string ,
entrez_query = organism_query + 7 [Orgn|”, format_type
= "text”)

#returns the results as a SeqRecord

result = next(SeqlO.parse(handle, ”fasta”))

handle. close ()

return result

REFERENCE: CHAP 7 sec 7.1 (pg 96/335) and sec 7.3 (pg
99/335) — http://biopython.org/DIST/docs/tutorial /Tutorial
.pdf

def blastx_nucleotide_seq_list(fasta_string):

Records are held in a list to enable access to any record
later in the program

48

RETURNS records of Human Protein Sequences for the given
organism. Results (50 entries MAX) are sorted in order
by score.

Will return a list of the results.

handle = NCBWWW. gblast (” blastx”, "nr”, fasta_string
entrez_query = "Homo Sapiens [Orgn]”, format_type =7
text”)

records = list (SeqlO.parse(handle, ”fasta”))

handle . close ()

return records

def find_DNA _from _reading_frame(reading_frame , query,

start_codon , stop_codon, protein_seq):

RETURNS the new dna sequence without the DNA before the
start codon and from the stop codon beyond

Loop through the length of the non—human organism dna,
CONSIDER its reading_frame

Start at the reading frame index

End 3 positions before the end of the length, since we
are looping by threes

dna_seq = [] # will store the new dna sequence

for i in range(reading_frame, len(query) — 3, 3):
Looping for start_codon
For each pair of codon, it will loop through the
length of start_codon
BEWARE: We are only considering the start codon ’
ATG’ , which occurs 99.9% of the time

#for j in range (0, 1, 1):
codon = query[i] + query[i+1] + query[i+2]

if (codon = ’ATG’):
Add codon to dna_seq — RESET IT
dna_seq = [codon|

Now looking for stop codon!
Begin loop where it ended in the codon
STart 3 indexes after i, because

49

start_codon was the previous 3 indexes
for k in range(i 4+ 3, len(query), 3):
Try—Except clause to catch IndexError
that may occur
try:
codon = query [k] + query[k+1] + query
[k+2]

Looping for stop codon

For each pair of codon after the
start_codon , loop through length
of stop_codon

for 1 in range (0, len(stop_codon),
1):
If match and len(dna_seq) =

original protein length (w/o

gaps)
if ((codon = stop_codon|[l]) & (
len (dna_seq) = len(

protein_seq))):

Appending STOP codon, but
it will not be
incorporated into the
SEQUENCE

dna_seq.append (codon)

return dna_seq

If an IndexError occurs, ignore this
and go back to find the correct Start
Codon

except IndexError:
break ;

Append codon to dna seq
dna_seq .append(codon)
return —1

def get_amino_acid_index (amino_acid):

79

RETURNS the index of the protein letter , if matched. Else
, returns —1 (as an error)

50

def

This is needed in order to get into the 2D codon bias
list and humanize the non—human DNA seq
for j in range(0, len(amino_acids_letter), 1):
if (amino_acid = amino_acids_letter[j]):
return j
return —1

export_results (organism, gene, dna):
Creates/Rewrites a file with the results (given through
param) and saves onto user’s desktop

9999

Getting the user ’s home environment path
users_env = os.getenv (”USERPROFILE")
path = users_env

Getting the name of the file the user wishes to save
the file as

new_file = input(”Name the text file to save the results
in: 7)

file_name = new_file + 7.txt”

Combining path and file name
file_path = path + 7\\Desktop\\” + file_name

Creating /Opening the file to write in
f = open(file_path , ’'w+’)
.write ("\nTest Organism:
.write (”\nGene: 7 + gene)
.write (”7\nHumanized DNA SEQUENCE: ” + dna)

rint (”"\nThe result has been saved in the 7 + new_file
+ 7.txt’ file on your desktop.”);

f.close ()

7

+ organism)

f
f
f
p

51

CREATE a 2D array of the Codon BIAS Table using the ’
Codon_Bias_ DB .txt ' FILE

aman,aCldS,letter — [77A77 , ”R” , 77N77 , 77D77 77C77 77E’7 77Q77 , 77G77 ,

7 2 7 ” ” 7 7 7 7 7 ” 7 7 7 2 ” ” 7 7) 7 ” ”

H "17, "L”, "K”, "M, "F", "P", "§”, " " & *Y" »V
77]

codon_bias_2D _list = [amino_acids_letter |

This list will be used to determine which organism the user
is using from the txt file

codon_bias_directory = ["N/A”]

File will be properly closed upon completion when using the
"with > keyword
with open(” Codon_Bias DB.txt”) as f:
Read each line in the file
for line in f:
count = 0;
This is the start of a new organism’s codon bias
If the line starts with a digit, it is NOT part of
a comment or an empty line
(see the "Codon_Bias DB.txt” file for reference)
if (line[0].isdigit()):
Organism Number

number = line

Organism Name

line = next(f)

name = line

Organism Codon Bias
line = next(f)
codon_bias = line

Call the subroutine to turn this into a list

List is appended to the 2D-Codon—list

codon_bias_2D _list.append(codon_bias_list (
codon_bias))

WARNING: ”"N/A” will be stored in index 0 of
this list because we want to keep

the 2D list and the directory complementary

52

codon_bias_directory .append(name.strip ('\n’))

print (”Welcome to the Humanizer!\n”);

User—Input:
they want to humanize

User enters in the latin organism name and gene

test_organism = input(”What is the latin name of your test
organism? 7)

Matching the user—inputed organism with the ’codon_bias_DB.
txt ’ file

If this data is not found, the program cannot execute:
program exits

exists = False
for i in range (1, len(codon_bias_directory), 1):
if (codon_bias_directory[i] = test_organism.lower()):
test_organism_index = i # This var will later be
used to connect to the codon bias 2D-list
exists = True
break
if (exists == False):

print (”\nSorry! The organism you entered ’7 +
test_organism + 7’ was NOT FOUND in the ’Codon_Bias_ DB
Stxt 7 file 7))

print (” Please check your spelling or input the data into
the file , and then try again!\n”);

exitPrgm = input (” Goodbye!”)

sys.exit () # Exits the program

test_gene = input(”What is the biological name of the gene
you are testing? 7)

print (”\nSearching for the DNA sequence for gene 7 +
test_gene + 7’ for test organism\n’’ + test_organism +

53

” ?7).
s

nucleotide_results = search_nucleotide_seq(test_organism ,
test_gene)

total_entries = int(nucleotide_results[” Count”])

if (total_entries = 0):

print (”\nNo results have been found for your query
sequence of + test_organism 4+ 7’ and 7 4 test_gene
" 2 7.77> ;

exitPrgm = input (”\nGoodbye!”)

sys.exit () # Exits the program

79

print (”\nResults: ” + nucleotide_results[” Count”]);
print (”\nThe results are printed below along with an INDEX
number of each result.\n”);

Looping through the results to provide a short summary of
each record

Capping the number of entries at 20

max_entries = 20

if (total_entries < max_entries):
for i in range (0, total_entries , 1):
result_id = nucleotide_results [” IdList”][1]
nucleotide_esummary (result_id)
num_entries = total_entries

else:
print (”\nOnly ” + str(max_entries) +
printed below.\n”)
for i in range (0, max_entries, 1):
result_id = nucleotide_results [” IdList”]|[i]
nucleotide_esummary (result_id)
num_entries = max_entries

” entries will be

User—Input: User selects the non—human nucleotide (DNA)
sequence record they want

while True:
try:

o4

nucleotide_result_index = str(input(”Type in the
INDEX of the DNA record you want: 7))

if (0 < int(nucleotide_result_index) <= num_entries):
break
print (”Sorry, invalid input. Try Again!”)
except ValueError:
print (”Sorry, invalid input. Try Again!”)

print (”"\n\nReturning non—human DNA sequence record for
result id: 7 + nucleotide_result_index)

Fetching the nucleotide id:

The user—inputted index needs to be casted as an int

Subtracting 1 to the index to balance out the addition
from ’'nucleotide_esummary ()’

int_index = int(nucleotide_result_index) — 1

result_index = nucleotide_results [”IdList”][int_index|

Fetching the nucleotide sequence
nucleotide_seq = fetch_seq(” nucleotide”, result_index)
print (7 \nNON-HUMAN DNA SEQUENCE RECORD:”) ;

print (nucleotide_seq);

Searching for non—human protein sequence
BLASTing nucleotide (DNA) seq against test organism to get
the protein seq of that organism

***********>I<>l<**”);

print (7sxx++x BLASTING NON-HUMAN DNA SEQ TO RETRIEVE NON-
HUMAN PROTEIN SEQ k%%) ;

print
(”***********************>|<>|<>X<*****************************\
n”);

nucleotide_id = nucleotide_seq.id

blast_result = blastx_nucleotide_seq(nucleotide_id ,
test_organism)

55

total_result = len(blast_result)

if (total_result = 0):
print (”\nNo Non—Human Protein Sequence have been found
for your query sequence, the non—human DNA sequence
record selected previously.\n”);
print (nucleotide_seq);
exitPrgm = input (”\nGoodbye!”)
sys.exit () # Exits the program

#Return the first result bc normally that’s the one with the
greatest match

result_id = blast_result.id

protein_seq = fetch_seq(” protein”, result_id)

print ("NONHUMAN PROTEIN SEQUENCE RECORD:”) ;
print (protein_seq);

Searching for human protein sequence
BLASTing the nucleotide (DNA) seq for the complimentary
human protein seq for the given gene

sk sk sk ok sk kKKK K KRR R K K K oK K SR KKK KKK KRR R R SR Sk K SR SR KKK KRRk sk sk ok ok ko)
print (7sxx%x BLASTING NON-HUMAN DNA SEQ TO RETRIEVE HUMAN
PROTEIN SEQ %%) ;
print
(77 sk st stk sk s s sk sk ok sk sk stttk ok kKRR R R R sk sk sk sk sk skt ok ok KRR R R R sk sk sk sk skt koK Rk

n77>;
#human _organism = "Homo Sapiens” #Comparing seq with Homo
Sapiens (Humans)
blast_results = blastx_nucleotide_seq_list (nucleotide_id)
total_results = len(blast_results)
if (total_results = 0):

print (”\nNo Human Protein Sequence have been found for
your query sequence, the non—human DNA sequence record
selected previously.\n");

print (nucleotide_seq);

56

exitPrgm = input (”\nGoodbye!”)
sys.exit () # Exits the program

print (” Results: 7 + str(total_results));
print (”\nThe results are printed below along with an INDEX
number of each result.\n”);

There should be 50 max entries, capping the entries at 20

Looping through the results to provide a short summary of
each record

Capping the number of entries at 20

max_blast_results = 20

print (7sxxx%x BLAST RESULTS sss%%x”);
if (len(blast_results) < max_blast_results):
for i in range (0, total_results, 1):
print (7INDEX: 7 4+ str(i + 1));
Running each result ’s id into the fetch_seq method
to fetch the protein seq
human_protein_seq = fetch_seq(” protein”,
blast_results[i].id)
print (human_protein_seq);
print (”Length: 7 + str(len(blast_results[i])));
print (")
tot_blast_results = blast_results

else:
print (”\nOnly ” + str(max_blast_results) + 7 entries
will be printed below.\n”);
for i in range (0, max_blast_results, 1):
print (7INDEX: ” + str(i + 1));
Running each result s id into the fetch_seq method
to fetch the protein seq
human_protein_seq = fetch_seq(” protein”,
blast_results[i].id)
print (human_protein_seq);
print (”Length: 7 + str(len(blast_results[i])));
print (7777);
tot_blast_results = max_blast_results

57

User—Input: User selects the human record they want to
compare with

while True:

try:
selection_result_index = str(input(” Type in the INDEX
of the record you want: "))

if (0 < int(selection_result_index) <=
tot_blast_results):
break
print (”Sorry, invalid input. Try Again!”);
except ValueError:
print (”Sorry, invalid input. Try Again!”)

print (”\nReturning human protein sequence for result id: 7 +
selection_result_index);

Fetching the protein id from the blast results:

The user—inputted index needs to be casted as an int

Subtracting 1 to the index to balance out the addition
from earlier

int_index = int(selection_result_index) — 1

human_protein_result_id = blast_results [int_index|.id

Fetching the human protein sequence with the protein id
human_protein_seq = fetch_seq(” protein”,
human_protein_result_id)

print (7 \nHUMAN PROTEIN SEQUENCE RECORD:”) ;

print (human _protein_seq);

This result contains an unidentified amino acid (’X’) in
its protein sequence

The application does not yet support unidentified amino
acids

unidentified_amino_acids_count = human_protein_seq.seq.count
("X")

if (unidentified_amino_acids_count > 0):

print (”\nSorry, the selected human protein sequence

58

record contains an unidentified amino acid.”);

print (” Unidentified amino acids are not yet supported by
the Humanizer.”) ;

print (” Please try again using a different human protein
sequence selection.”);

exitPrgm = input (”\nGoodbye!”)

sys.exit () # Exits the program

ALIGNING the non—human and human protein sequences using
BioPython'’s Pairwaise?2

print (”\n\n

***”);

print (7sxx%x ALIGNING ’7 + test_organism + 7’ AND ’Homo

Tk)

Spaiens
print
(77 sk skt sk sk s s sk sk ok sk sk sk sk stk ok ok ok kR K sk sk sk sk sk sk sk stk ok kKRR Rk sk sk sk sk sk skt ok ok kR ok | TL
") ;
alignments = pairwise2.align.localds(protein_seq.seq,
human_protein_seq.seq, blosum62, —10, —0.5)

print (pairwise2.format_alignment (xalignments [0]));

The result (alignments) is a list containing seqA, seqB,
score , begin index and end index

The data listed above are all stored in the first index of
alignments: alignments [0]

Storing alignments[0] into a new variable to extract the
individual items within this list

alignment_output = alignments [0]

non_human_organism = alignment_output [0] # non—human
protein sequence (includes GAPS)

human_organism = alignment_output [1] # human

protein sequence (includes GAPS)

Updates the non—human protein sequence (which does not
include gaps) to get a length to get the open reading

59

frame later
STARTING NON-HUMAN PROTEIN SEQUENCES AT 'M’, or ’ATG’

BECAUSE THAT IS WHERE THE OPEN-READING FRAME OF THE DNA (
new_dna_Seq) WILL START

Thus, we are ignoring the encodement of any amino acids
before the start codon

updated_protein_seq = "7
protein_sequence = protein_seq.seq
for i in range (0, len(protein_sequence), 1):

if (protein_sequence [1i] M)

for j in range (i, len(protein_sequence), 1):

updated_protein_seq += protein_sequence|[]]
break

Retrieving the 3—frame translation of the non—human
nucleotide (DNA) seq to get the

correct READINGFRAME (DNA seq translates to its Protein

seq)
query = nucleotide_seq.seq # non—human DNA seq
target = non_human_organism # non—human PROTEIN seq
score = 0.0
translated_dna = 77
reading_frame = 0

FIGURING OUT WHICH READING FRAME WITHIN THE DNA MATCHES THE
PROTEIN SEQ

for frame_start in range(3):

frame = translate (query|frame_start :])
temp_score = pairwise2.align.localxx (frame, target ,
score_only = True)

This will get the translated dna with the best score
if (temp_score > score):

reading _frame = frame_start
score = temp_score
translated_dna = frame

60

Extracting DNA before the start codon, and after the stop
codon from the non—human DNA sequence
Determining the OPEN READING FRAME of teh DNA sequence

See: http://biopython.org/DIST/docs/api/Bio.Data.CodonTable
—pysrc. html

standard_table = CodonTable.unambiguous_dna_by_id [1]
start_codon = standard_table.start_codons
stop_codon = standard_table.stop_codons

Find the open reading frame of the dna sequence using the
reading frame

new_dna_seq = the dna for the non—human protein sequence: '’
protein_seq’
new_dna_seq = find_DNA from _reading _frame (reading_frame ,

query , start_codon , stop_codon, updated_protein_seq)

if (new_dna_seq — —1):
print (” There has been an error finding the open reading
frame of the nucleotide sequence.”);
print (” Please try again.”);
exitPrgm = input (” Goodbye!”)
sys.exit () # Exits the program

HUMANIZING THE GENE

Modifying the updated non—human DNA sequence (’'new_dna_seq
") to get a DNA sequence more

aligned with the human DNA sequence for the user—inputed

gene

modified_dna_seq = 7"
start = False

#Boolean to track the start codon

#This is required in case there are gaps
BEFORE the start codon,

#thus, the new_dna_seq (nucleotide seq of
the open reading frame)

61

#needs to be updated to add the gaps
before the start codon

non_human_organism = protein sequence (seq includes the
gaps)
human _organism = protein sequence (seq includes the gaps)
if (len(non_human_organism) = len (human_organism)):
for i in range(0, len(non_human_organism), 1):
Comparing each character within the sequences

if (non_human_organism[i] != human_organism/[i]) :
if (non_human_organism[i] = 7-"):
get the protein from the human seq (col)
amino_acid_index = get_amino_acid_index (

human_organism[i])
IF: There is an error
if (amino_acid_index =— —1):
print (” Sorry. There has been an error
matching an amino acid from the human
protein sequence to the proteins
listed in the amino acids list (’
amino_acids_letter) .”);
print (” Error occurs at index 7 + str(i)
+ 7 of the human protein sequence”);

print (”"Human amino acid: 7 +
human_organism[i]) ;
print (”Non—human amino acid: 7 +

non_human_organism [i]) ;
exitPrgm = input (” PGoodbye!”)
sys.exit () # Exits the program
ELSE: Add the human protein
get the codon from the organism (row =
test_organism_index)
add = codon_bias_2D _list [test_organism_index
][amino_acid_index |
modified_dna_seq 4= add
Start codon has been added
if (add = "ATG”):

start = True
inserting a gap into the new_dna_seq (non—

human dna seq)
because there’s a gap in its protein

62

sequence: this is required
to make sure the new_dna_seq is translated
as closely as possible
new_dna_seq.insert (12, =)
new_dna_seq.insert (i, '—7)

elif (human_organism|[i] = "-"):
Delete the non—human organism protein:
We do not want the model organism’s gene
integrated with the human organism ’'s gene
To Do This: Just don’t add anything to the
modified_dna_seq and don’t do anything
to new_dna_seq (which holds the nucleotide
seq for the non—human orgn), else this
+# will mess up the index of reading in the
new_dna_seq .
If human_organism|[i] = "-" and "—" is
located before the start codon in the
non_human_organism protein seq

THEN, ignore the amino acid (of the
non_human_organism) at the same location
as ="

BUT, don’t ignore the dna sequence (
new_dna_seq) at that position!

So increase the length of new_dna_seq
at the begining!

if ((new_dna_seq[i] = "ATG”) & (start =
False)):

new_dna_seq.insert (i, '—7)
modified_dna_seq = modified_dna_seq

non—human|[i] and human|[i] are not the same

protein

else:
get the protein from the human seq (col)
amino_acid_index = get_amino_acid_index (

human _organism [i])

IF: There is an error in the human protein
sequence (containing an ambiguous amino
acid)

if (amino_acid_index =— —1):

63

print (” Sorry. There has been an error
matching an amino acid from the human
protein sequence to the proteins
listed in the database.”);
print (” Error occurs at index ” + str(1i)
+ 7 of the human protein sequence
selected from the BLAST results.”);
print (”"Human amino acid: 7 +
human_organism[i]) ;
print (”Non—human amino acid: 7 +
non_human_organism [i]) ;
print (”\nGoodbye!”) ;
sys.exit();
ELSE: Replace the non—human protein with
the human protein
get the codon from the organism (row =
test_organism_index)
add = codon_bias_2D _list [test_organism_index
][amino_acid_index |
modified_dna_seq 4= add
Start codon has been added
if (add = "ATG”):
start = True

Non_human and human protein are the same
else:

Keep the non—human organism protein

add = new_dna_seq[1i]

modified_dna_seq 4+= add

Start codon has been added

if (add = "ATG”):

start = True

This should never happen since the pairwise alignment

always makes sure the two protein sequences are of the
same length

But this is just a precaution.
else:
print (” Length of test organism protein sequence and
human protein sequence do not match!”);

print (”Cannot humanize the gene at this time. Please try
again.”) ;

64

exitPrgm = input (” Goodbye!”)
sys.exit () # Exits the program

print

("\n\n

>|<***”)

Y

print (7 skosookkkkskokokokokokkokoxoxx FINAL RESULTS
**********************”);

print
(77 sk sk o st ootk sk sk o KoK KoK SR R KK KK SR R R KK KK SR SRR K KK SR SRR K KKK SRR K KKK SRR oK
n”);

Print the humanized dna sequence

print (” Test Organism: ” + test_organism);

print (”Gene: 7 + test_gene);

print (” Humanized DNA SEQUENCE: ” 4+ modified_dna_seq);

do_not_save = True;
while (do_not_save):
save = input (”\nTo Save the result as a text file, enter
Y.\ nElse, enter 'N’: 7)
if save.lower() = ’y’:

export_results(test_organism , test_gene,
modified_dna_seq);

do_not_save = False;
elif save.lower() = ’'n’:
do_not_save = False;
exitPrgm = input (” Thank you for using ’'The Humanizer .
Goodbye!”)
Exit program
sys.exit ()

65

	Introduction
	Background and Related Work
	Understanding the biology
	Learning BioPython
	Related bioinformatics tools

	Design
	System Architecture
	User interface design

	Implementation
	A Step-by-Step Walkthrough

	Testing
	Functional testing
	Usability testing

	Conclusions and Future Work
	Program Code

