
The HUMANIZER:

A Much Needed Tool for Genetic Engineering

By

Stacy Vang

An Honors Project Submitted in Partial Fulfillment

of the Requirements for Honors

in

The Department of Mathematics and Computer Science

Rhode Island College

2018

Abstract

The Humanizer is a program developed to solve a problem genetic re-
searchers encounter when humanizing genes. To humanize a gene means to
make modifications to a model organisms gene so it may perform in a way that
is more like how it would perform in humans. This is done by making changes
to a model organisms gene only when a discrepancy exists between the model
organisms gene and the human gene. Today, researchers in this field spend long
hours humanizing genes manually because there is no other way to do it. In ad-
dition, the length of genes can range from hundreds to thousands of nucleotide
base pairs which can make the process even more dreadful. If done manually,
it is inevitable that researchers have to humanize each nucleotide, one by one.
Such a process is time consuming, error-prone, and requires the coordination
of many tools. Therefore, the purpose of The Humanizer is to change the
manual process into an automatic process, cutting the wait time from several
days to several minutes. This application performs as any researcher would:
determining genes in test organisms by querying through databases, comparing
and retrieving related sequences, and humanizing the gene one base at a time,
among other things.

Contents

1 Introduction 1

2 Background and Related Work 6
2.1 Understanding the biology . 6
2.2 Learning BioPython . 9
2.3 Related bioinformatics tools . 9

3 Design 11
3.1 System Architecture . 11
3.2 User interface design . 15

4 Implementation 15
4.1 A Step-by-Step Walkthrough . 16

5 Testing 35
5.1 Functional testing . 35
5.2 Usability testing . 40

6 Conclusions and Future Work 40

A Program Code 44

List of Figures

1 Exons and Introns . 2
2 Codon Bias: Drosophila Melanogaster (Fruit Fly) 5
3 Codon to Amino Acid Table . 7
4 Architecture Diagram . 11
5 The Humanizer: Implementation Flow Chart 16
6 The Humanizer: Finding the Executable Application 17
7 Codon Bias Database: Instruction 18
8 Codon Bias Database: Elements in database 18
9 Codon Bias 2D List and Codon Bias Directory 20
10 Welcome Greeting . 21
11 Test Organism Error . 21
12 Test Organism and Gene . 22
13 Entrez Search . 22
14 Entrez Results . 23
15 Select Test-Organism DNA Sequence Record 24
16 BLASTing to Retrieve Test-Organism Protein Sequence 25
17 BLASTing to Retrieve Human Protein Sequence 26
18 Select Human Protein Sequence Record 27
19 Aligning Protein Sequences . 28
20 3-Frame Translation . 29
21 BioPython: Codon Table . 30
22 The humanizing process . 31
23 Returns Humanized DNA Sequence and Prompts to Save Sequence . 33
24 Saving results in a text file on user’s desktop 33
25 End of Program . 34
26 Text file of saved results . 34
27 Automatic Nucleotide Search with the Humanizer: finding the test

organism’s DNA sequence . 35
28 Manual Nucleotide Search: finding the test organism’s DNA sequence 36
29 Automatic BLASTX Search: finding the test organism’s protein sequence 37
30 Manual BLASTX Search: finding the test organism’s protein sequence 37
31 Automatic BLASTX Search with the Humanizer: finding the human

protein sequence . 38
32 Manual BLASTX Search: finding the human protein sequence 38
33 Automatic humanized form: includes protein sequences alignment, 3-

frame translation, and determination of the open reading frame . . . 39
34 Manual humanized form: reverse check with BLASTX against homo

sapiens . 39
35 Flowchart of next steps . 42

1 Introduction

Working with Dr. Geoffrey Stilwell, head of the genetics research team at Rhode
Island College, I have designed and developed an automated tool called “The Hu-
manizer”. The purpose of this program is to improve the way genetic researchers
perform a task known as “humanizing” genes, by converting the task from a manual
process into an automatic process.

The Humanizer automates an inherently tedious and error-prone manual process
and, for the first time, makes it possible for researchers to perform this task in min-
utes rather than days. The Humanizer performs as any researcher would: determining
genes in test organisms by querying through databases, comparing and aligning re-
sults to retrieve related sequences, and humanizing the gene one base at a time,
among other things. Not only that, but one of the strengths of this application is its
ability to incorporate all the different modules required in a manual job into just one
application.

One of the uses of the Humanizer will be to help with research of human diseases.
When we take notice of the years passing by, as if we were watching a time-lapse
video, we would notice that the planet we call Earth has quickly transformed into
a technology driven environment by the dominant omnivores we call homo sapiens,
humans. As we learn more, our curiosity grows generating the beginning of an ever-
growing loop of learning.

Among our many curiosities lies the need and urge to figure out more about dis-
eases that hinder the lives and bodily functions of our own kind. Genes are segments
of DNA that hold the instructions to code for specific traits, or proteins, of an or-
ganism. More than 3,000 human diseases are caused by heritable mutations in genes
which produce mutant proteins. Mutant proteins are proteins encoded by a gene with
alterations in its DNA sequence. Thus, when constructing a protein out of this DNA
sequence, it can lead to missing or malformed proteins, which causes diseases. More
explanation on mutations is given in Chapter 2. Two examples of diseases caused by
mutations include sickle-cell anemia and cystic fibrosis. Sickle-cell anemia is the cause
of a mutation in the gene for hemoglobin, a protein responsible for transporting oxy-
gen in the blood. This causes red blood cells to distort into a sickle shape and clogging
capillaries which leads to cut-offs of blood circulation. On the other hand, cystic fibro-
sis is a disease that causes build-ups of mucus in the lungs, pancreas, and other organs
which leads to the clogging of airways, respiratory failure, and prevention of the break-
down of food and absorption of nutrients [The Tech Museum of Innovation, 2018].

Today, we can learn quite a bit about human diseases directly from humans,
though how much we are able to learn is limited. For example, researchers can
learn more about diseases by giving out surveys to people who have a certain type
of disease and figuring out how they feel, if they experience any restrictions with
their type of disease, etc., but even with these answers, researchers have to be aware
of the possibility that answers are not 100% accurate. Or, an experimentation can

1

occur where there is a control group and an experimentation group: say a group of
people with a certain disease who are not taking medications versus another group of
people with that same disease who are taking a type of medicine. This can determine
whether or not the medication helps people in any way. Still, these types of responses
can vary from person to person. So, there is only so much researchers can learn about
diseases in this way without going against any ethical values. Therefore, more concrete
experimentation must occur to really study the origin, symptoms, and possible cures
of diseases. This leads to experimentation on model organisms.

Because humans are so genetically different and there are so many variables to
account for when studying the human population, researchers have begun to rely
on model organisms. Model organisms are a group of organisms that aid in the
understanding of biology in humans. More specifically, their genetic make-up is well-
known to researchers, and they have similar biology compared to humans. Examples
of some model organisms used throughout research includes fruit flies, mice, and
zebrafish
[National Institute of General Medical Sciences (NIGMS), 2017].

The theory of evolution, made prominent by Charles Darwin, states that organ-
isms change over time because of changes made in heritable physical or behavioral
traits. Therefore, genes in animals are evolutionarily conserved. This means that al-
though related, they are not identical in sequence across species. As a result, proteins
encoded by related genes are similar and perform similar functions generally; however,
subtle differences in the structure and function of the proteins may exist [Than, 2018].

Figure 1: Exons and Introns

source: https://www.pinterest.com/pin/235031674278137353/?autologin=true

One type of experimentation that has begun to pick up in recent years are ex-
periments run by directly injecting a gene’s coding sequence (CDS) with a mutation
that causes a disease into a test organism, or model organism. A gene is a portion of

2

DNA sequence which includes exons and introns as shown in Figure 1.
A CDS represents the exons of a gene which are the DNA sequences that code for

a particular protein. Thus, exons code for a protein whereas introns are intervening
non-coding regions which play no important functional role at this time. Mutations
within exons (the CDS) are often the basis of human disease. Reseachers can inject
a mutated CDS into a test organism as a way to study the disease.

Human disease research relies on being able to manipulate genes in non-human
organisms and recent technological advances has made this process less cumbersome
and time-intensive. It is now possible to insert human genes into non-human organ-
isms and study their effects. Ideally, the best approach to ’humanizing’ a gene is to
make the fewest changes possible and only within exon regions of a gene.

Because the technology to conduct these biological studies is so new, Biologists
humanize genes manually because no automated tool exists. The length of genes can
range from hundreds to thousands of nucleotide base pairs. If done manually, it is
inevitable that researchers have to humanize each nucleotide in a DNA sequence, one
by one. Such a process is, both, time consuming and prone to errors. At RIC, Dr.
Stilwell has adopted the manual technique of humanizing genes used in the industry.

The National Center for Biotechnology Information (NCBI) contains a large DNA
database and bioinformatic tools to access and analyze genomic information. Biol-
ogists access and analyze DNA through a GUI interface which limits the available
tools. In part, the ’humanizer’ utilizes some of the existing algorithms including
the Basic Local Alignment Search Tool (BLAST). Within BLAST exists sub-tools:
BLASTP, BLASTN, BLASTX, TBLASTN, and TBLASTX. Each sub-tool focuses
on a different purpose, but the one used in the Humanizer is BLASTX.

The first step in humanizing a gene by hand is to first search for the protein
sequence of the model organism and gene the user wishes to humanize. This is done
by entering in the organism’s name and gene name into the protein database search
provided within the NCBI website. A number of results may appear and it is up to
the user to decide which record they wish to use. Then, the user retrieves a protein
sequence for the gene within humans by using the BLASTP tool, also provided on
the NCBI website. This requires a query sequence, which is the sequence retrieved
earlier from the protein database. This sequence gets put into the BLASTP search
along with an optional parameter to limit the search within humans only. In this
case, the user would enter in ’homo sapiens’ into the optional ’organism’ text box in
the GUI interface.

After the researcher retrieves the two protein sequences the researcher can obtain
the DNA sequence of the gene within the model organism. This is done by entering
in the name of the organism and the name of the gene directly into the nucleotide
database within the NCBI website. A number of results may appear and it is up to
the user to select the record they want.

Now, the user can perform an alignment on the two protein sequences, meaning
compare and modify them to make them more comparable. This requires the use of

3

a pairwise alignment tool. Dr. Stilwell uses a pairwise alignment tool called Emboss
Water, provided in a separate website. The user pastes in the protein sequence of
each organism into the GUI interface for alignment. Once the protein sequences are
aligned, differences between the model organism and human sequences are identi-
fied and displayed to the user where changes have been made and where there are
discrepancies between the amino acids of both sequences.

Going back to the NCBI website, the user obtains a DNA sequence of the model
organism and gene from the nucleotide database. This step is similar to how the user
obtains a protein sequence: by entering in the organism’s name and gene name into
the nucleotide database. A number of results may appear and it is up to the user to
decide which record they wish to use.

Then, using the nucleotide sequence retrieved from the nucleotide database, the
user will run it in another tool to obtain the correct reading frame of the DNA
sequence. Dr. Stilwell uses a tool called Emboss Transeq, also provided in the same
website as Emboss Water. This tool takes a DNA sequence, inputted directly by the
user, and translates it into six possible reading frames. Three (3) reading frames from
reading the DNA sequence from the begining to the end of the sequence, and then
again in reverse, from the end of the sequence to the begining. More information
about what reading frames are is provided in Section 3.1. Emboss Transeq returnes
the six possible reading frames to the user and the result that matches the protein
sequence retrieved from the protein database from NCBI in step one determines the
correct reading frame.

Finally, now that the user has an alignment of the two protein sequences for
comparison and the DNA sequence that codes for the model organism’s protein se-
quence, the user can now manually make changes to the DNA sequence nucleotide by
nucleotide.

4

Figure 2: Codon Bias: Drosophila Melanogaster (Fruit Fly)

source: http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=7227

To humanize a gene by hand requires the usage of a codon bias table. An example
of this is shown in Figure 2. More information about this is provided in Section 3.1.
To get this though, users would have to look up the model organism’s codon bias
online. Using this information, amino acid by amino acid, the user will see where
there is a discrepancy between the two protein sequences. If the amino acids in the
same position of both sequences do not match, a change must occur. For example,
let’s say the amino acid in position five (5) of the model organism’s protein sequence
is ’L’, and the amino acid in position (5) for the human protein sequence is ’A’. The
user will have to look at the codon bias of the model organism and find out what three
(3) nucleotides code for the amino acid ’A’. Then, the user changes the nucleotide
bases in the DNA sequence, of the model organism, that coded for ’L’ and changes
that to the nucleotide bases that code for ’A’. This occurs until the user reaches the
end of the two protein sequences.

The humanized gene is crucial, but such a technique is both tedious and prone to
mistakes, as you can probably tell, which can lead to inaccurate results. Researchers

5

also spend a great deal of time humanizing genes when they can be experimenting
and researching. In addition, for different test organisms, a different humanized form
is required regardless if it is intended for the same gene or not. This also results in
repeated work being done.

In Dr. Stilwell’s lab, the genetics research team has been studying a disease
called Amyotrophic Lateral Sclerosis (ALS). ALS is a disease that causes nerve cells
to break down which weakens the muscles and reduces muscle functionality. This
causes symptoms such as muscle twitching, also known as fasciculations, muscle
cramps and weakness, and difficulty with chewing or swallowing. As time passes,
the symptoms only get worse. It is estimated that between 14,000 - 15,000 Ameri-
cans have ALS, but there is no cure for it yet, only treatments to control its symp-
toms. There are two types of ALS: Sporadic ALS and Familial ALS. The major-
ity of people with this disease have sporadic ALS, meaning the disease may have
occurred randomly with no family history of the disease. Only 5%-10% of people
with ALS are diagnosed with familial ALS, which means the individual inherited
the disease from their parents. In the case of familial ALS, it has been identi-
fied by scientists from the National Institute of Neurological Disorders and Stroke
(NINDS) that some familial ALS cases were associated with a mutation in the SOD1
gene. It is still unclear how this mutation led to the degeneration of motor neurons
[National Institute of Neurological Disorders and Stroke (NINDS), 2013].
ALS is just one of many diseases that we still know very little about. Therefore, the
need to find out more about diseases and how to cure them is a top priority for many
researchers in this field.

In the remainder of this thesis, I will describe some of the biological terms, concepts
and tools needed to understand the purpose and goals of the program. Secondly, I
will go over the modules that were integrated to complete the application. Then,
discussions of implementation will proceed. After that, testing will follow suit. And
lastly, the conclusion and future work section will end the thesis.

2 Background and Related Work

2.1 Understanding the biology

Before developing this tool, there are some biology terms and concepts that I needed
to learn and understand to develop this application.

Deoxyribonucleic acid (DNA) is a chain of nucleotides carrying genetic informa-
tion. It is made up of two strands that are twisted together to form a helix. Each
strand is a sequence of genes, and each gene is a sequence of nucleotides. One of the
most important construction pieces of nucleotides are their nitrogenous bases.

There are four (4) types of nitrogenous bases found in DNA strands: adenine (A),
cytosine (C), guanine (G), and thymine (T). Each strand contains the complementary
genetic information of the other strand. In DNA, adenine pairs with thymine, and

6

cytosine pairs with guanine. Therefore, if one of the DNA strands contain bases
’CAGGTA’, then the other strand should carry its complementary bases ’GTCCAT’
[Genetics, Education, Discovery (GeneEd), 2018].

Genes are passed down by parents to children, and as stated earlier, they carry the
instructions needed to assemble proteins. Proteins are large macromolecules that are
major structural and functional components of cells. Each protein is constructed by
a chain of amino acids, and an amino acid is the construction of three (3) nitrogenous
bases. These three (3) nitrogenous bases are also called a codon.

Figure 3: Codon to Amino Acid Table

source: https://www.chemguide.co.uk/organicprops/aminoacids/dna4.html

There are twenty-two (22) different types of amino acids that can be constructed
but only twenty (20) main ones are in use. Although it may seem that there should be

7

sixty-four (64) different amino acids, it is important to know that there exists more
than one way to construct a single amino acid. This is seen in Figure 3. In Figure 3,
Valine (Val) can be assembled from the nitrogenous bases ’GTT’, ’GTC’, ’GTA’, or
’GTG’. Hence, there also exists a concept known as codon bias1 where every type of
organism has a preferred construction of each amino acid in their DNA.2 This concept
will be very important to the completion of the Humanizer. More information about
this topic will be given in Chapter 3 and Chapter 4.

In Figure 3, to figure out which amino acid is created by each codon, find its first
nitrogenous base on the left hand side. Then follow that row across until you find its
second nitrogenous base, which is sorted by columns. Finally, you are left with four
options, each with a different third nitrogenous base. The amino acid that is created
by that codon will be listed in its abbreviated form to the codon’s right. Let’s say
we are looking for the amino acid made from the codon ’CCT’. Its first nitrogenous
base is ’C’, so we will look at the second row. The next nitrogenous base is also ’C’.
Therefore, we will stop at the second column of that row. The last nitrogenous base
is a ’T’, which is listed as the first codon within that section. Thus, the codon ’CCT’
codes for the amino acid Proline (Pro). This figure also contains codons that code
for ’start’ and ’stop’ codons. This is available because within genes exist an open
reading frame. This open reading frame is actually where the instruction that code
for a protein begins and ends. A gene does not typically contain only instructions
that code for the protein. For a protein to be built, another protein called a promoter
will read through the gene until it finds this ’start’ codon to begin constructing the
protein. It will know when to stop coding for the protein when it reads a ’stop’ codon.
In Figure 3, the codon ’ATG’ which codes for Methionine (Met) is the start codon,
and the codons ’TAA’, ’TAG’, and ’TGA’ codes for a stop codon [Pevsner, 2015].

As a result of three (3) nitrogenous bases, a codon, coding for one (1) amino acid,
and a chain of amino acids constructing a protein, if a nitrogenous base is switched out
with another nitrogenous base, there is a huge chance that different amino acid will be
constructed. In addition, imagine if there is an insertion of an extra nitrogenous base,
a deletion of a nitrogenous base. This means the amino acid construction from that
instance and ongoing will all be disrupted. This alteration of the nucleotide sequence
will end up altering the composition of the protein. If more than one amino acid is
changed, the construction of the whole protein will be flawed. This is what scientists
call a mutation. Thus, the constructed protein may not perform as it should which
may also lead to diseases [The Tech Museum of Innovation, 2018].

1Codon bias is based on research done among a mass of DNA sequences from organisms to
determine the most frequently used construction of each amino acid.

2This does not go to say that there does not exist a less frequently used codon within an organism’s
DNA.

8

2.2 Learning BioPython

To learn BioPython, the most useful tool was the online documentation found on
BioPython’s website [Chang et al., 2017]. This documentation provided information
on some of the main modules supported, and examples of how to use them. I thought
this documentation was best at providing a good foundation of BioPython. It was
also fairly easy to follow for beginners.

When the information provided in the BioPython website was not enough, I found
the Application Programming Interface (API) documentation helpful
[International Association of Developers, 2017]. This document defines each of the
Python objects within BioPython more specifically. A separate example for each
explanation is provided and further links are provided as well to learn even more
about each module. Because this API documentation includes so many other links,
I think this was most helpful in understanding how to use the required modules.
Using this documentation in combination with the source code for BioPython, I was
able to understand what parameters were required, why they were required, optional
parameters, return values, among other things.

2.3 Related bioinformatics tools

BLAST is a program that uses rigorous statistics to score sequences. The scores
reveals related sequences present in the same organism or different organisms to show
how closely related each result is to the query sequence. BLAST takes an input
query sequence, and performs a pairwise alignment between the given sequence and
a database. A pairwise alignment is an alignment of two sequences which determines
their relatedness at a sequence level. So, all search results from a BLAST search are
either highly related to the query sequence or marginally related. Related sequences
may be homologous and have common functions.

The BLAST algorithm consists of three (3) phases: list, scan, and extend. The
first phase of the algorithm compiles a list of words of a specific size. In protein
searches, the default size of word pairs is three (3). These words are generated
directly from the query sequence. For example, let’s say the query sequence includes
the following amino acid sequence ”KVNALTVWG”. Thus, the word pairs of size
three (3) would be ’KVN’, ’VNA’, ’NAL’, ’ALT’, ’LTV’, ’TVW’, and ’VWG’. Then,
with each word generated from the sequence, a list of similar words are produced. A
couple of similar words that would be produced for the word ’KVN’ would be ’KVL’,
’KVA’, ’KTN’, and ’WVN’. Because there are twenty (20) different amino acids and
each word size is three (3), then there are 8000 possible words. A threshold value,
T, is established for the score of aligned words. If the threshold value is raised, the
BLAST search takes less time, but the user will receive less results. These results
will not include distantly related database matches. Thus, the opposite would occur
if the threshold value is lowered. BLOSUM62, a common scoring matrices for amino
acids, is used to score each pair of similar words. So, if any words from the list of

9

similar words are equal to or greater than the threshold value, then that word moves
on to the next stage in the BLAST algorithm. If any words from the list of similar
words are less than the threshold value, they are not pursued any longer.

The next phase in the blast algorithm is the scan stage. A scan of the database
for word pairs that matches the pairs of similar words that had passed the threshold
value from the previous step is executed. In the example above, let’s assume that
from the list of similar word pairs the words ’KVA’ and ’KTN’ passed the threshold
value T. Then, in this step, a scan of the protein database for sequences containing
the words ’KVA’ or ’KTN’ is performed. Notice that these word pairs are not exact:
compare ’KVA’ and ’KTN’ to the word from the query sequence ’KVN’. This idea
of incorporating a threshold allows the BLAST search to return exact sequences and
non-exact but similar sequences. So, when a ’hit’ is found, this is called a ’hit’. Each
’hit’ is then extended for the rest of the sequence before and after the word match
using gaps to create an alignment. During extension, a score is calculated using some
sort of scoring matrices like BLOSUM62. The extension continues as long as the score
continues to increase. Once it drops to a critical amount, this is called a ”dropoff”, and
the ’hit’ is no longer pursued. Meanwhile, any ’hit’ whose score exceeds a particular
cutoff score, S, is known as a high-scoring segment pair (HSP) and it returned as
a BLAST result. During extension, to increase efficiency, insertions, deletions, and
mismatches are not accounted for. This leads up to the third phase.

The last phase is a trace-back of the ’hit’ sequence to locate insertions, deletions,
and mismatches between the ’hit’ and the query sequence that were not saved earlier.

There are five different BLAST algorithms, but the one used in this application
is called BLASTX. BLASTX takes a DNA sequence and translates it into protein
sequences using all the different reading frames. More information about reading
frames will be provided in Section 3.1. After translating the DNA sequence, it then
takes the protein sequences and performs a pairwise alignment against the protein
database. This alignment determines the protein sequence record that is encoded by
the DNA sequence.

The sequence inputted into the BLAST search in Figure 16 is the non-human
DNA sequence record. It is translated into three (3) different protein sequences, and
then taking those sequences a pairwise alignment is done against the protein database
for the record that represents each sequence. The default database in BLASTX is the
non-redundant (nr) database which contains sequences from Genbank, Protein Data
Bank (PDB), SwissProt, PIR, and other data banks supported by NCBI. In total,
there is approximately 65 million protein sequences in the non-redundant database.
Therefore, it is important to keep in mind that when using the BLAST tool, it can
take as long as a few seconds to a couple of hours.

Each record that has any sort of relationship with the DNA sequence will be
returned in the results, and each record will have a score and an expect threshold value
(E-value). Scores are attained by a scoring scheme which describes the relatedness
between the query and each database hit. Scores are calculated from scoring matrices.

10

In this application BLOSUM62 is used. The greater the score, the more aligned it is
with the DNA sequence. The E-value represents the number of alignments, within
the search, whose scores are equal to or greater than its score that are expected to
occur in a database search only by chance. This gives an estimate of the number of
false positive results received from the search; the lower the E-value, the lower the
probability that the sequence had occurred by chance. Because the score and E-value
are inversely related, the higher the score, the lower the E-value [Pevsner, 2015].

3 Design

3.1 System Architecture

Figure 4: Architecture Diagram

As seen in Figure 4, there are fifteen (15) modules that make up the Humanizer,
some that were written for this project and some external modules that needed to be
integrated with it.

The Humanizer, itself, has ten (10) modules that perform the following tasks, in
sequence:

11

• Get desired test organism name and gene from the user

• Retrieve possible test organism DNA sequences

• Get user’s choice of test organism’s DNA sequence

• Retrieve the test organism’s protein sequence

• Retrieve possible human protein sequences of the same gene

• Get user’s choice of human protein sequence

• Align the test organism and human protein sequences

• Perform a three-frame translation of the DNA sequence

• Determine the open reading frame of the DNA sequence

• Humanize the gene

The Humanizer (Application)This module contains the code for the whole appli-
cation, and integrates all the following modules together.

• The Humanizer first prompts the user with the name of the model organ-
ism, or test organism, and the name of the gene which the user wishes to
humanize. This information gets stored into the program for later usage
throughout the application.

• Using the name of the test organism and gene, given by the user in the
previous module, as parameters, the Humanizer connects to ENTREZ (ex-
plained in further detail below) and searches for DNA sequences that meet
the parameters.

• A maximum of twenty (20) entries will be shown to the user. The entry
with the highest scores will show first. At this point, it is up to the user to
determine which record to use as the DNA sequence. It is important that
the user makes this decision rather than the application because it would
be near impossible to physically identify exactly what the user needs.

• Once the DNA sequence is selected, this selected record is used to find the
protein sequence that is most related to it. In other words, the protein
sequence that is encoded by the DNA sequence. This is performed in the
BLAST tool.

• The DNA sequence is put into a BLAST search again to find records of
protein sequences within humans, for the same gene. There may be more
than one result because any record that is even slightly related to the DNA
sequence will be returned. A maximum of twenty (20) entries will be shown
to the user. Records with the highest scores populating first.

12

• It is now up to the user, again, to determine which record to use as the
protein sequence for humans of the same gene. It is important that the
user makes this decision rather than the application because it would be
near impossible to physically identify exactly what the user needs.

• This step requires the alignment of the two protein sequences, the test
organism’s protein sequence and the human’s protein sequence. The se-
quences are compared, one amino acid at a time, and aligned to ensure
they are of equal length. Gaps are added into the sequences at this time
for any sequences lacking an amino acid compared to the other sequence.

• A three-frame translation is then performed on the DNA sequence. The
segment of DNA sequence acquired does not always begin with a complete
codon. This step is required for the program to define where to start
reading the DNA sequence. More information on this step is explained in
Chapter 4.

• The open reading frame of a DNA sequence is the segment of instructions
that actually code for the protein. As mentioned in Chapter 2 about
the start and stop codons, the start and stop codon will determine where
the instructions begin and end. Thus, this module reads each codon in
the DNA sequence with the help of the reading frame, acquired in the
previous module, to determine the coding region of the protein. The rest
of the DNA sequence is ignored by the program, and this open reading
frame becomes the new DNA sequence.

• Finally, using the two protein sequences, the application compares each
amino acid, one by one. When it finds any discrepancies between the amino
acids, a change in codon, in the newly updated dna sequence, occurs. More
details on this step is provided in Chapter 4

CodonBiasDB.txt The Codon Bias Database is a file that contains the codon bias of
all twenty (20) amino acids for numerous test organisms. During humanization
of a gene, this module keeps the test organism’s DNA sequence as close to its
original as possible by allowing the system to take into account the most popular
codon that codes for each amino acid. This is determined by looking at every
gene in the genome, the complete set of genes in an organism, and determining
which codon was used the most for every amino acid.

Within the application, when the protein sequences of both the test organism
and humans are determined, each amino acid making up that protein is com-
pared. Any differences between the amino acids, of the two sequences, that
require a change in DNA with the test organism’s protein sequence will look
into this codon file. The application will search for the discrepant amino acid
of the human protein sequence, find the codon bias for that amino acid for the

13

test organism, and then make the necessary changes to the test organism’s DNA
sequence.

End-users must maintain this file for the most accurate results. Only the in-
dividual users will know for certain what types of test organisms are used in
their labs. Thus, if a test organism is being used and is not already included
in the text file, it is of the responsibility of the user to ensure its information
is entered in. Instructions of how to include and format the data is provided
in the text file itself. Any test organism whose codon bias information is not
documented in this file will result in the termination of the application, as this
file is an integral part in humanizing genes.

ENTREZ To build the Humanizer, I had to make it work with several external modules
provided by the National Center for Biotechnology Information (NCBI). NCBI
is a huge resource that allows access to, not only genomic information, but also
to tools that can turn the information retrieved from its databases into infor-
mation that can be used to humanize genes. Some of the databases supported
by NCBI includes the Gene database, Protein database, Nucleotide database,
and PubMed. NCBI also supports a tool known as the Basic Local Alignment
Search Tool (BLAST). Within BLAST exists sub-tools: BLASTP, BLASTN,
BLASTX, TBLASTN, and TBLASTX. Each sub-tool has a different purpose.

Entrez is an integrated search engine used by NCBI to retrieve data from its
many supported databases. Specifically, with connection to ENTREZ, the Hu-
manizer can access databases such as the nucleotide database and modules such
as ENTREZ’s search, summary, and fetch modules. These modules allow the
Humanizer access to do numerous things with the results generated from the
search.

Nucleotide DB Entrez allows the application to connect to the Nucleotide Database
which can retrieve nucleotide sequences, the complete strand of individual ni-
trogenous bases constructing a protein, or DNA sequence. Entrez inputs the
name of an organism and the name of a gene into the database. In our case, the
name of the test organism and the name of the gene we are researching would
be entered.

Entrez then returns a list of records that match the input, back to the applica-
tion. There may be more than one response, because all results that are only
partially similar will also be returned. These results are then formatted and
shown to the user, who will then select the record they wish to use.

BLASTX This module translates DNA sequences into protein sequences, and then
compares them to other sequences in the protein database. This reveals related
sequences present in the same organism or different organisms.

14

3.2 User interface design

For now, the Humanizer has a simple text-based command-line interface. Be-
cause of time constraints, my main priority was to ensure the usability and
accuracy of the program before focusing on the cosmetics of the program. As
a result, development of a more visual-friendly user interface will have to be
delayed to future work.

4 Implementation

The Humanizer is completely written in Python, a high-level scripting language,
along with the addition of the BioPython library. Although I have experience
with Python from a previous course, there were still some things that needed
to be learned to develop this program. In addition, BioPython was new to me
so I experienced a learning curve with this library also. BioPython provides
various tools which allow an application to connect to the National Center for
Biological Information’s ENTREZ search engine (described below) and gather
biological information. Currently, the Humanizer is being executed through the
python shell.

The Humanizer takes the DNA sequence, retrieved from the Nucleotide DB
search, and runs it through BLASTX two times. First, with the Nucleotide DB
result, the DNA sequence, and the test organism’s name. This will translate the
DNA sequence into multiple protein sequences, and save the sequence with the
best match as the protein sequence for the test organism. The second BLAST
will include the same Nucleotide DB result as a parameter, but will be run
against Homo Sapiens, humans, instead of the test organism as in the previous
BLAST. This will result in a protein sequence match of the same gene within
humans. BLASTX will return a list of records with the matches, it will be
formatted and shown to the user, who will then choose the match they wish to
use. The selected record will now be known as the protein sequence of the test
gene in humans.

These two protein sequences are required for comparison for the gene undergoing
testing. Now, with the two protein sequences, an alignment is done to ensure
the every amino acid from both strands are aligned. This is done by adding
gaps into the sequence where there is a lacking amino acid.

Next, a 3-frame translation is done to the DNA sequence to find the correct
reading frame of the strand. This step leads to the determination of the open
reading frame within the DNA strand. Once this is completed, humanization
can finally occur.

Further details and an explanation of each step is provided in the next section.

15

4.1 A Step-by-Step Walkthrough

Figure 5: The Humanizer: Implementation Flow Chart

Figure 5 shows a complete flow chart of the implementation of the Humanizer.
All modules from the design Section 3.1 are also included, as well as all the
methods that are called within each module and the lower-level variables that
appear in each.

16

Figure 6: The Humanizer: Finding the Executable Application

To run the Humanizer, after successful installation, first the user locates and
opens the ’TheHumanizer’ folder. This folder contains all the files necessary
to run the humanizer. Next, the user runs the ’TheHumanizer’ executable
application found within the opened folder. This is shown in Figure 6.

17

Figure 7: Codon Bias Database: Instruction

Figure 8: Codon Bias Database: Elements in database

As soon as the user runs the program, the application loads the codon bias
database by opening up the “Codon Bias DB.txt” file and storing its data into

18

the program. This allows the application to use the information stored in the
database. As seen in Figure 7, the
Codon Bias DB.txt file first contains some meta-data about the file itself: its
title, a description of what sort of data it holds, a reference link, and instructions
on how to add to the database. Because this database requires maintenance
from its users, instructions are necessary to keep the database formatted in
the way it is read into the application. The text file’s main purpose is to
contain the name of a variety of test organisms, along with their codon bias
of each of the main twenty (20) amino acids for each organism. Thus, after
the instructions include an example of how each entry should look like, as well
as some warning points to be aware of. These warning points emphasis the
importance of the format each element in the database should follow. Figure 8,
which is a continuation of Figure 7, shows some elements that are already in
the database. As mentioned in the set of instructions, each element makes up a
total of three (3) rows. The first row of each element is numbered, in numerical
order, of which it appears in the database. The next row contains the name
of the test organism, or non-human organism. The last row contains the list
of codons that are favored by the organism for each of the twenty (20) amino
acids.

The Humanizer reads in information from the text file line by line. It keeps
track of the test organisms in the Codon bias DB.txt file by storing their names
in a list called the Codon Bias Directory. To do this, the application uses each
records first line to indicate where to store the organism’s name, which is given
in the following line, in the codon bias directory. Then, it reads the next line,
a long string of all the codon biases for that organism, and stores them in the
codon bias table, codon bias 2D list. This repeats until the end of the file is
reached. The codon bias list method is used primarily for this purpose. This
process allows the program to verify whether a codon bias for a user-given test
organism is provided before it continues further, and also allows the Humanizer
to look up the row number in which a particular organism’s information is
stored.

19

Figure 9: Codon Bias 2D List and Codon Bias Directory

Next, behind the scenes, the Humanizer generates a 2D-list of the codon bias
table. The first row of the array is a list of the twenty (20) amino acids in
their single-letter abbreviated form. The following rows each correspond to a
different test organism. Each cell contains the codon bias for its row organism
and amino-acid column. It also generates a separate list of the organism’s
names, where the location of each name is the same as the number of the row
in which that organism’s information is stored in the codon bias 2D-list. This
list is called the codon bias directory. Examples of both lists are shown in
Figure 9. This figure shows that the test organism ’drosophila melanogaster’ is
located in index one (1) of the codon bias directory. Thus, in row one (1) of the
codon bias 2D list, shows the codon bias of each amino acid within the model
organism drosophila melanogaster. For amino acid Alanine (A), drosophila
melanogaster’s codon bias is ’GCC’, for Arginine (R) its codon bias is ’CGC’,
and so forth. A complete list of the full names of each amino acid and their
one-letter abbreviation is provided in the ’Codon Bias DB.txt’ file.

20

Figure 10: Welcome Greeting

Figure 11: Test Organism Error

After the application loads the database into its memory, it then greets the user.
This is the first thing the user sees. Displayed in Figure 10, the user is welcomed,
and then the Humanizer immediately asks for the name of the test organism
whose gene the user will be humanizing. Although it is not case-sensitive, the
name must be spelled exactly how it appears in the ”Codon Bias DB.txt” file.
If not, the user will receive an error message as seen in Figure 11.This message
will end the program after advising the user to check that the database is up to
date and accurate.

After creating the 2D-list of the codon bias table, and the codon bias directory
list, the program welcomes the user and asks for the Latin name of the test
organism along with the name of the gene undergoing testing. It is at this time
that, after input, the program checks in the codon bias directory to make sure
the organism’s codon bias is in the codon bias database. If it does, the program
continues onto the next step. If not, an error message is displayed to the user,
and the program ends.

21

Figure 12: Test Organism and Gene

Figure 13: Entrez Search

Next, the application will prompt the user for the name of the biological gene,
which the user will be humanizing. An example of this screen is shown in Fig-
ure 12. After the user successfully enters in both of these fields, the Humanizer
now searches for DNA sequences that match the organism and gene which the
user had entered, as shown in Figure 13.

22

Figure 14: Entrez Results

The program queries for this search with NCBI’s ENTREZ tool which includes
multiple modules for performing certain tasks. Using the ’search’ module. This
module allows for the application to make a search through any databases sup-
ported by NCBI. In this application, and in this search specifically, the query is
bounded to the nucleotide database since we are looking for a DNA sequence.
The method search nucleotide seq allows the program to perform this task. It
uses the user-inputted organism and gene as parameters to search for DNA
sequences that match the query.

Then, using the ’summary’ module, ENTREZ allows the program to extract
certain information found in each result to display to the user. This is done in
the method nucleotide esummary. Results are sorted with the best match first.
Only the top twenty (20) entries will be displayed. A maximum has been set
because of the high possibility that thousands of results may be returned. The
number of results will be shown immediately after the search has completed,
and the results will follow, shown in Figure 14 presents. An index is included
with each search result for identification purposes within this application only.
The following row of each result is a unique ID tag that identifies its record,
while the next row includes various identifiers each result goes by within various
NCBI databases. The fourth row is the name/description of each result, while
the last row shows how many nucleotide bases long the gene is.

23

Figure 15: Select Test-Organism DNA Sequence Record

After all the results are displayed, the next step prompts the user to carefully
examine the results and choose the result that best match their needs. The user
is prompted for the index of the record they wish to humanize. NCBI allows
records to be manually added in by their users, thus, duplicates and errors
are a possibility within the databases. Therefore, at this point, the expertise
of the user is required to carefully identify and select a result that suits their
needs. In Figure 15, record 11 is selected as the DNA sequence that will undergo
humanization.

24

Figure 16: BLASTing to Retrieve Test-Organism Protein Sequence

Once the DNA sequence is selected, it’s index is used in the method fetch seq to
grab the record’s data, including its personal identification tag. The application
returns this result, once again, to the user as a confirmation of what the user has
chosen. In Figure 16, the record’s ID, name, description, number of features,
and a portion of the sequence appears. This returned format is called FASTA, a
commonly used sequence format. Having the record formatted in FASTA allows
it to be recognized as a sequence, and then used throughout the program.

The FASTA record is first put to use through the two BLASTX searches that
follow. In the first BLAST search, the program runs the DNA sequence against
the same test organism to get a complementary protein sequence for that test
organism. In other words, this BLAST process determines the protein sequence
record that is encoded by the DNA sequence selected earlier. The method
blastx nucleotide seq will perform this task and return the first result, which is
also the result with the closest match, to the user. Figure 16 shows this first
BLAST result.

The sequence inputted into the BLAST search in Figure 16 is the non-human
DNA sequence record. It is first translated into three (3) different protein
sequences, one for each reading frame, which will be explained further in this
section, and then taking those sequences a pairwise alignment is done against

25

the protein database for the protein sequence that represents each sequence.
The default database in BLASTX is the non-redundant (nr) database which
contains sequences from Genbank, Protein Data Bank (PDB), SwissProt, PIR,
and other data banks supported by NCBI. In total, there is approximately
65 million protein sequences in the non-redundant database. Therefore, it is
important to keep in mind that when using the BLAST tool, it can take as long
as a few seconds to a couple of hours.

As the BLAST search concludes, only one record is displayed to the user: the
first record, the record with the best score. Therefore, it concludes that the
record shown in Figure 16 will represent the translated DNA sequence, the
protein sequence of the test organism.

Figure 17: BLASTing to Retrieve Human Protein Sequence

The second BLASTX search is performed right after the test organism’s protein
sequence is retrieved. The program is BLASTing the test organism’s DNA
sequence again, but this time it is limiting the search to protein sequences
found in humans (homo sapiens) only. This limitation falls under one of the

26

many optional parameters allowed in a BLAST search. In the previous BLAST
search, there were no organism limitation, thus the program only looked for
protein sequences related to the DNA sequence within its own organism, the
given test organism. A different method, blastx nucleotide seq list will provide
the user the results as a list. Having the results shown as a list will allow the
user to choose the result they prefer because a number of records related to the
DNA sequence will appear to the user as shown in Figure 17. The results, like
in Figure 16, are returned in FASTA format using the method fetch seq which
connects to the fetch module in ENTREZ. A maximum of twenty (20) results
will be displayed to the user. This maximum has been set because of the high
possibility that thousands of results may be returned. Remember that the most
likely aligned sequences are shown first.

Figure 18: Select Human Protein Sequence Record

After all the results are displayed, the user runs upon another inquiry which asks
for the index of the human protein sequence they wish to use. Like the process
that occurred in Figure 14 and Figure 15, an index number is included in the
results for easier identification of each record. Again, this step would require
the expertise of the user to identify and select the record that best meets their
needs. In Figure 18, index 3 is inputted. Once the program receives the input,
it prints out the record again to the screen in FASTA format using the method
fetch seq. This can be seen in the top half of Figure 18. At the end of these
two blast algorithms, the program will have a DNA and protein sequence for
the user-given gene in the user-given organism, as well as the protein sequence
for the user-given gene in humans.

27

Figure 19: Aligning Protein Sequences

Now that the application has the protein sequence of the test organism and
the protein sequence of homo sapiens, for the same gene, the program performs
another pairwise alignment but with the two protein sequences. This means
that each amino acid that constructs the proteins will be compared individually.
Although the two sequences are theoretically related, they may not be of the
same length so each amino acid that makes up the protein may not be aligned
in the correct position compared to the other protein sequence. When this
is the case, the pairwise alignment done in this instance inserts dashes into
the sequence, called gaps. Gaps are added to sequences when an extra amino
acids are found in the other protein sequence it is being aligned with. The
gaps show that in that position an amino acid is not present when compared
to the other protein sequence. As you can see in Figure 19, the top sequence,
the test organism’s protein sequence, has two consecutive gaps, whereas the
bottom sequence, the human protein sequence, has two amino acids in that
same position. This means that the human protein sequence has two additional
amino acid at this location that is not present in the test organism’s sequence.
The vertical lines between the two sequences shows the alignment of each amino
acid in the two sequences. There is also a score that shows how related the two
sequences are to each other.

The pairwise alignment, in this case, is performed by a pairwise alignment
module defined in BioPython, called pairwise2. Both sequences are inputted
into the method. The program does not use BLAST for this pairwise alignment
because BLAST typically performs pairwise alignments with given sequences
against databases. In this case, we have two sequences to compare and align.

After the two protein sequences are aligned, they should be of the same length
and each amino acid should be aligned with the help of gaps. Moving away
from the protein sequences now, we look back at the DNA sequence that was
acquired in Figure 16.

28

Figure 20: 3-Frame Translation

source: https://classes.engineering.wustl.edu/cse131/extensions/frame.jpg

After aligning the two sequences, the program performs a 3-frame translation
on the DNA sequence acquired previously for the test organism. As stated prior
about the construction of a codon, three (3) nucleotide bases code for an amino
acid, and groups of amino acids create a protein. The gene provides instructions
on how to create the protein which includes the individual nucleotides that code
for it. Unfortunately, the DNA sequence acquired in Figure 16 does not always
begin with a full codon. In other words, because a codon consists of three
(3) nucleotide bases the DNA sequence from the ENTREZ search could have
returned the DNA sequence starting with a full codon, at the second position
of a codon, or even the last position of a codon. This totals up to three (3)
different reading frames as seen in Figure 20. Therefore, a 3-frame translation
is required to determine how the DNA sequence should be read.

Thus, the next step in the program is to determine which reading frame is the
most accurate. The program uses a loop that runs three times, and basically
reads the DNA sequence with a different starting point each time, either from
the very beginning, from the second position, or the third position. Each time,
it translates the whole DNA sequence. This gives us three (3) different pro-

29

tein sequences which are then put into a pairwise alignment, pairwise2, with
the protein sequence acquired from Figure 16, the first blast result. Pairwise2
returns a score of each comparison, and the pair that returns the highest score
is concluded as the correct reading frame.

With the correct reading frame determined, we now need to detect where in
the DNA sequence the instructions for the protein begins and ends, because
unfortunately the DNA sequence also does not begin at the start of the coding
region. This is called the open reading frame. The DNA sequence can have
nucleotide bases before the instructions begin and after the instructions end,
both of which are not needed for humanization. In addition to the codons that
code for amino acids, there are also codons that determine the start of a coding
region and the end of a coding region. These are called start and stop codons.
In Figure 3, the start codon that codes for Methionine (Met) is ’ATG’, and
the stop codons are marked as ’stop’ in red. With this information, we can go
through each codon in the DNA strand and find the one that codes for the start
codon. All the codons before the start codon can then be extracted since we
have no need for them. Also, keep in mind that we have the protein sequence
which includes all the amino acids that code for the protein, thus we can get
the length of the protein sequence and use it to determine the end of the DNA
strand.

Figure 21: BioPython: Codon Table

source:
http://biopython.org/DIST/docs/api/Bio.Data.CodonTable-pysrc.html

30

The program calls the find DNA from reading frame method to find the start
and stop codons in the DNA strand. Then it extracts the codons that are not
required. In BioPython, there are built in codon tables like the one shown in
Figure 3. This codon table is shown in figure 21. This provides the program
with lists of start and stop codons which tells the program what to look out
for in the DNA sequence reading. As seen in Figure 21, there exists three (3)
different start codons: ’TTG’, ’CTG’, and ’ATG’. Though, since it is rare for
genes to have a start codon other than ’ATG’, the Humanizer will only look for
the start codon ’ATG’ in DNA sequences. The list of start and stop codon gets
sent as a parameter into the find DNA from reading frame method, as well as
the reading frame indicator.

First, the method looks for a start codon by reading the DNA sequence in
its correct reading frame and comparing it the start codon parameter. After
finding the start codon in the DNA strand, all codons prior are extracted and
the program now seeks for the stop codon by going through each subsequent
codon. While doing so, it also keeps a count of how many codons it has looped
through, until it finds a stop codon. Because there are three possible stop
codons, the program will compare each codon in the DNA strand to the three
(3) options until there is a match. When there is a match, the program will also
make sure the count it kept track of earlier matches the length of the protein
sequence. Once the stop codon is found, all codons that follow will also be
extracted.

By this time, we will have an updated DNA sequence of only its open reading
frame. This updated DNA sequence is stored in a variable called ’new dna seq’
in the Humanizer. Now, we can finally humanize the gene!

Figure 22: The humanizing process

31

Finally, taking the two protein sequences, the Humanizer compares each indi-
vidual amino acid of both sequences at each position until it reaches the ends
of the sequences. Only when the application notices a discrepancy between the
amino acids will it make any changes to the DNA sequence updated earlier,
’new dna seq’. These forthcoming changes to ’new dna seq’ will be saved in
a new variable called ’modified dna seq’. The ’modified dna seq’ variable will
represent the humanized DNA sequence. It starts off empty and fills up as
codons are appended to it.

If amino acids in the test organism sequence and the amino acid sequence match,
the codon that codes for the amino acid of the test organism will be appended
to the variable ’modified dna seq’.

If the amino acid in the test organism sequence and the amino acid in the human
sequence do not match, like in Figure 22 highlighted in red and marked 1, the
application will change the codon in the DNA sequence and make it code for
the amino acid found in the human sequence at that location. This is where
the data from the ”Codon Bias DB” comes in.

In Figure 22, the non-human protein sequence has a ’R’, for Arginine, and
the human protein sequence has a ’P’, for Proline, in position 3. The applica-
tion then calls the get amino acid index method and puts the amino acid ’P’
(Proline) in the parameter. It then finds the row of the test organism in the
”Codon Bias DB” list, that stores the test organism’s codon bias metadata,
and grab the codon bias that codes for amino acid ’P’ (Proline). An image of
the ”Codon Bias DB” list from Figure 8, shows that the row for test organ-
ism Drosophila Melanogaster is the first row. The test organism, Drosophila
Melanogaster’s, codon bias for Proline (P) is ’CCC’. Thus, instead of the codon
’CGC’ that codes for Arginine (R) being added to the ’modified dna seq’ vari-
able, its codon bias for Proline (P), ’CCC’, will be appended.

If the non-human organism has a gap as highlighted in Figure 22 and marked
2, the program will append the codon that the non-human organism favors for
the amino acid ’K’, Lysine, found in the human protein sequence at that same
position. It does this by calling the get amino acid index method, goes into the
correct row in the
Codon Bias DB table, and finding the codon bias for Lysine (K).

Lastly, if the human protein sequence is the sequence with a gap in any of its po-
sitions, marked 3 in Figure 22, nothing will be appended to ’modified dna seq’.
We only want to add to the DNA sequence if something is missing or the amino
acids do not match. Other than that, we will not be appending any codons to
the humanized sequence.

Although there is more than one way to construct many of the amino acids,
we keep to the organism’s codon bias, the preferred codon, that codes for the

32

amino acid in the case the chemical properties present in the codon is required
for the organism’s natural bodily functions or prevents it. Because, as stated
earlier, we do not want to disrupt any organism’s natural way of functioning.

Figure 23: Returns Humanized DNA Sequence and Prompts to Save Sequence

Figure 24: Saving results in a text file on user’s desktop

33

Figure 25: End of Program

This humanizing step continues until the program reaches the end of the protein
sequences. Once that is completed, the gene has been humanized and the user
sees a screen similar to that shown in Figure 23. The name of the test organism
and the gene, both given by the user at the beginning of the program, and the
humanized DNA sequence are all printed to the screen. In addition, the user
sees the last prompt of the program, seen in Figure 23. The user has a choice
of saving the results into a text file. If the user enters ’N’, for no, the program
immediately ends after printing out a farewell. If the user enter ’Y’, for yes, the
user is asked to type in the name of the text file they wish to save the results
in. In Figure 24, ’testing’ is entered. Finally, the program tells the user that
the file has been saved to their desktop, prints out a farewell, and the program
ends, shown in Figure 25.

Figure 26: Text file of saved results

When the user goes to their desktop, the text file would have been saved with
the name the user had inputted. If the file does not already exist, the program

34

will create that file for the user, if it does exist, the file will be saved over the
previous file. Figure 26 shows the record that was saved which includes the
name of the test organism, the name of the gene, and the humanized DNA
sequence.

5 Testing

5.1 Functional testing

Dr. Stilwell and I ran the Humanizer using three sets of different organisms and genes
to ensure the functionality of each module within the system. Although its interface
is quite simple, at this moment, for its users, its functionality is more important.

Figure 27: Automatic Nucleotide Search with the Humanizer: finding the test organ-
ism’s DNA sequence

35

Figure 28: Manual Nucleotide Search: finding the test organism’s DNA sequence

One of the tests we ran uses the model organism ’drosophila melanogaster’, also
known as fruit flies, and the gene ’SOD’ which is the gene that causes ALS and also
the gene Dr. Stilwell is currently studying.

First, as discussed in Section 4.1, we entered the name of the test organism that
will host the humanized gene, and the name of the gene we are studying. Thus,
we entered in ’Drosophila Melanogaster’ and ’SOD’ respectively. This query is then
searched against NCBI’s nucleotide database through ENTREZ, and we got the same
fourteen (14) results as we did if we performed this step by hand. Figure 27 show
the results from the Humanizer application which performed this automatically, and
Figure 28 show the results from the manual NCBI nucleotide search, which we also
ran.

36

Figure 29: Automatic BLASTX Search: finding the test organism’s protein sequence

Figure 30: Manual BLASTX Search: finding the test organism’s protein sequence

The next step, after we selected the nucleotide sequence we preferred, the first
BLAST search is done. We selected result number eleven (11). In the automatic
process with the Humanizer, the best result, which is also the first result, has an
ID of ’NP 476735.1’, as seen in Figure 29. In the manual process, the first result in
Figure 30 also displays the same record whose ID is ’NP 476735.1’, after we BLASTed
record number 11.

37

Figure 31: Automatic BLASTX Search with the Humanizer: finding the human
protein sequence

Figure 32: Manual BLASTX Search: finding the human protein sequence

Then the second BLAST search is performed. This comparison is limited to the
gene within the organism homo sapiens as mentioned in Section 4.1. The automatic
process had a total of fifty (50) results, despite only showing twenty (20). We com-
pared the first couple of results from the automatic process, seen in Figure 31, to the
results from the manual process in Figure 32. You can see that the results are the
same by comparing the ID’s from Figure 31 to the accession numbers in Figure 31.
Since the results were the same for both processes, we moved on to the next step.

38

Figure 33: Automatic humanized form: includes protein sequences alignment, 3-frame
translation, and determination of the open reading frame

Figure 34: Manual humanized form: reverse check with BLASTX against homo sapi-
ens

We then selected a human protein record. In the Humanizer, after this step is
performed, an alignment is instantly done to the two protein sequences, followed by
the determination of the open reading frame in the test organism’s DNA sequence.
Lastly, humanization of the gene is done and returned to the user. Figure 33 shows
the results we received at the end of this process: we had selected the first record,
whose ID is ’pdb—2ZKY—A’, as our human protein sequence. The humanized form
relies heavily on the accuracy of the protein alignments and the identification of
the open reading frame. So, to make sure all this is correct, we manually ran the
humanized result retrieved from the Humanizer into BLASTX while limiting the

39

search to only homo sapiens. This will translate out humanized DNA sequence into
a protein sequence. If the humanized form is accurate, this should return a protein
sequence, within humans, that matches our humanized DNA sequence with 100%
accuracy. Indeed, Figure 34, which displays our BLASTX results, shows that the
first record has a 100% identity with our query sequence, the humanized form. In
fact, it is the exact protein sequence we had selected previously after the second
BLAST.

In addition to the organism ’Drosophila Melanogaster’ and ’SOD’, we ran tests
with ’Danio Rerio’ (zebrafish) and the gene ’OPTN’, short for optineurin, and ’Mus
Musculus’ (rat) with gene ’TARDBP’. Similar results were obtained for both separate
test cases.

Thus, we have concluded that these tests supports our conclusion that the func-
tionality of the Humanizer is indeed accurate. From the tests we ran, we tested on
three (3) different model organisms and three (3) different genes. The DNA sequences
we chose ranged from hundreds to almost 3,000 base pairs, taking into consideration
the humanization of longer genes. Since the test cases were all random and expected
results were obtained, it must be safe to assume that the Humanizer will work for
any sequence users would choose in the future.

5.2 Usability testing

While the immediate users of the Humanizer, Dr. Stilwell and the members of his
lab, have tried this application and found it usable, before we publish this tool, we
intend to test it more systematically on a broader set of users. Accordingly, I have
completed the CITI training required by RIC’s Institutional Review Board (IRB),
and we plan to submit a proposal for a usability experiment on the Humanizer to the
IRB before the end of the semester.

6 Conclusions and Future Work

Developed using Python and the BioPython library, the Humanizer is able to connect
numerous sources together to humanize genes. The manual process normally requires
the usage of many different sources like searches within NCBI’s nucleotide and protein
databases, BLAST, and Emboss Water just to humanize a gene. In addition, the
manual process also requires the user to personally humanize the result at the end.
The amount of wait time and high possibility of errors from the common manual
process is greatly diminished with the development of this tool, making it a huge
stepping stone in the research and experimentation of human diseases on animal
models.

After completing this project, I realized I have come a long way to understand
the work the Humanizer must perform. A great bulk of my time with this project
required learning numerous biology concepts. Although I had a bit of understanding

40

from previous biology courses I had taken in the past, humanizing genes went into
much greater depth. In addition to biology concepts, I spent a lot of time learning
about the tools I needed the Humanizer to connect to. NCBI’s Entrez search tool
alone supports so many different features to query through all the databases supported
by NCBI. Not only that, but the results retrieved from these sources needed to be
understood too, in order for me to use them. The BLAST tool is another tool I had
to learn about, as well as its algorithms which allows it to perform such a useful task.
There were also many surprises along the way that forced me to learn even more about
biology. Then, I had to figure out how to translate that into the code. An example of
one of these surprises were the result of the addition of the 3-frame translation. When
I got to this part in the application, the results were not matching up. No matter
how I edited the code, it was still not coming up correctly. The reason was because
of a small piece of biology that I had overlooked. Aside from the biology, I found
that learning BioPython was a bit of a complication. Although the documentation
that came with it was easy to follow, especially for a beginner like me, it did not go
into as much depth as I had needed it too. One of the challenges were trying to find
other sources that would help me learn what I needed my program to do. There were
not many outside sources other than those found throughout its website and the API
documentation. Thus, I found myself going directly into the source code of BioPython
to see what was really happening behind the scenes. Overall, the development of the
Humanizer entailed learning from day one to the very end of the semester. While the
development of the Humanizer is reaching the end of its first run, I feel most proud
of all the biology I learned and using that to create an application that will be of use
to other people at our college, and hopefully even beyond that.

For future runs of the Humanizer, I would suggest other developers to first focus
on understanding the biology that is being demonstrated by the program already,
before building on it. Next, to build on this project, the developer must know the
tools that are used. Personally humanizing a gene by hand would really help with
the understanding of both of these, and show how the program works as well.

41

Figure 35: Flowchart of next steps

From a biological point of view, an important update to the program should
include a step further after humanization. Humanization, which is explained in Sec-
tion 4.1, returns a humanized DNA sequence that only includes the exons of the gene,
the coding sequence (CDS). As stated in Chapter 1, there also exists introns that do
not code for proteins, but also hold a very important value. Although they do not
code for proteins, they may code for the functionality of the organism that without
it may cause complications. Figure 35 displays this concept and shows that the next
step of development should include the insertions of introns back into the genome.

Some other features a developer may want to pick up is adding a more user-
friendly interface to the program: adding a menu to show the user what types of
model organisms are in the codon bias 2d list. This may also extend to allow the
user to enter in abbreviations of model organism names, or take away the option of
typing in the organism name altogether to avoid any errors. Another feature can be
to allow the program to show more than twenty (20) entries at a time after searching
through the nucleotide database for DNA sequences, or after BLAST searches. With
the help of developers and biologists, the Humanizer can reach places further than
Rhode Island College. Thus, I am excited and honored to have been able to present
the first development of the Humanizer, and I look forward to seeing where it leads.

42

References

[Chang et al., 2017] Chang, J., Chapman, B., Friedberg, I., Hamelryck, T., de Hoon,
M., Cock, P., Antao, T., Talevich, E., and Wilczyski, B. (2017). Biopython tutorial
and cookbook. http://biopython.org/DIST/docs/tutorial/Tutorial.html.

[Genetics, Education, Discovery (GeneEd), 2018] Genetics, Education, Discovery
(GeneEd) (2018). Genetic code. https://geneed.nlm.nih.gov/topic_

subtopic.php?tid=15&sid=19.

[International Association of Developers, 2017] International Association of Develop-
ers (2017). Package bio. http://biopython.org/DIST/docs/api/Bio-module.

html.

[National Institute of General Medical Sciences (NIGMS), 2017] National Institute
of General Medical Sciences (NIGMS) (2017). Using research organisms to study
health and disease. https://www.nigms.nih.gov/Education/Pages/modelorg_

factsheet.aspx.

[National Institute of Neurological Disorders and Stroke (NINDS), 2013]
National Institute of Neurological Disorders and Stroke (NINDS)
(2013). Amyotrophic lateral sclerosis (als) fact sheet. https://www.

ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/

Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet.

[Pevsner, 2015] Pevsner, J. (2015). Bioinformatics and Functional Genomics. Wiley-
Blackwell, United Kingdom.

[Than, 2018] Than, K. (2018). What is darwin’s theory of evolution. https://www.
livescience.com/474-controversy-evolution-works.html.

[The Tech Museum of Innovation, 2018] The Tech Museum of Innovation (2018).
Mutations and disease. http://genetics.thetech.org/about-genetics/

mutations-and-disease.

43

http://biopython.org/DIST/docs/tutorial/Tutorial.html
https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=19
https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=19
http://biopython.org/DIST/docs/api/Bio-module.html
http://biopython.org/DIST/docs/api/Bio-module.html
https://www.nigms.nih.gov/Education/Pages/modelorg_factsheet.aspx
https://www.nigms.nih.gov/Education/Pages/modelorg_factsheet.aspx
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet
https://www.livescience.com/474-controversy-evolution-works.html
https://www.livescience.com/474-controversy-evolution-works.html
http://genetics.thetech.org/about-genetics/mutations-and-disease
http://genetics.thetech.org/about-genetics/mutations-and-disease

A Program Code

###
PROGRAMMER: Stacy Vang
DESCRIPTION:
This program w i l l take a user−input b i o l o g i c a l organism

name and gene and run i t aga in s t
the NCBI Nuc leot ide database to re turn a DNA sequence . The

r e s u l t i n g sequence i s then BLASTed to
r e t r i e v e i t s Prote in sequence , and then b la s t ed again to

r e t r i e v e a Human Prote in sequence . The program
then runs the Pai rwise2 func t i on from the BioPython

package to a l i g n the two pro t e in sequences . A
3−frame t r a n s l a t i o n i s run to f i n d the c o r r e c t reading−

frame f o r the t e s t organism . Al l n u c l e o t i d e s
be fo r e the s t a r t codon (o f the t e s t organism n u c l e o t i d e

sequence) , and a l l n u c l e o t i d e s a f t e r the stop
codon i s ex t rac t ed . This r e s u l t s to the determinat ion o f

the open read ing frame o f the DNA sequence .
The remaining n u c l e o t i d e bases in the DNA sequence w i l l be

modi f i ed . Any d i s i m i l a r i t i e s
in amino ac id s between the t e s t organism and the human

pro t e in sequence w i l l r e s u l t in a change o f
amino ac id s at the n u c l e o t i d e l e v e l .
##
PURPOSE: The purpose o f t h i s program i s to a id i t s u s e r s

in humanizing genes . The r e s u l t s o f t h i s
program w i l l p re s ent the user with a humanized gene o f the

user−inputted gene and organism .
###

###
IMPORTING NECESSARY LIBRARIES
###
import sys # Required to e x i t the program
import os # Required to get user ’ s environment
import Bio # Required to run Biopython Modules

SEE: http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l . pdf (
page 125/335 , chap 9)

SEE: http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l . pdf (
page 72/335 , chap 6)

44

from Bio import Entrez , SeqIO , AlignIO
SEE: http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l . pdf (

page 96/335 , chap 7)
from Bio . Blast import NCBIWWW, NCBIXML
from Bio . Seq import t r a n s l a t e
SEE: http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l . pdf (

page 94/335 , s e c 6 . 4 . 6)
from Bio import pa i rw i s e2
from Bio . SubsMat . Matr ixInfo import blosum62
SEE: http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l . pdf (

page 30/335 , s e c 3 . 10)
from Bio . Data import CodonTable

###
Adding g l o b a l emai l v a r i a b l e accord ing to the ’NCBI’ s

Entrez User Requirements ’
###
REF: http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l . pdf (

page 126/335 , s ec 9 . 1)
Entrez . emai l = ” g s t i l w e l l @ r i c . edu”

###
METHODS
#
c o d o n b i a s l i s t Creates a l i s t o f

each organism (in the Codon Bias DB f i l e) ’ s s e t o f codon
b ia s

s e a r c h n u c l e o t i d e s e q Quer ies through the
NCBI Nuc leot ide Database f o r the user−given t e s t organism
and gene

nucleot ide esummary Grabs d e t a i l
d e s c r i p t i o n o f a p a r t i c u l a r sequence record from the NCBI
Database .

f e t c h s e q Fetches n u c l e o t i d e /
p ro t e in sequence from the NCBI Nuc leot ide and Prote in
Databases g iven the index / id o f a record

b l a s t x n u c l e o t i d e s e q B la s t s the n u c l e o t i d e
sequence o f a user−given organism to get a Prote in

Sequence
b l a s t x n u c l e o t i d e s e q l i s t B la s t s the n u c l e o t i d e

45

sequence o f a user−given organism to get Prote in
Sequences from Homo Sapiens

find DNA from reading frame Extracts the
n u c l e o t i d e s be f o r e the s t a r t codon and from the stop codon
beyond from the DNA

get amino ac id index Retr i eve the index o f
the amino ac id abbr l e t t e r from the ’ a m i n o a c i d s l e t t e r ’

l i s t that matches the amino ac id g iven
e x p o r t r e s u l t s Export r e s u l t s i n to a

text f i l e
###

def c o d o n b i a s l i s t (c o d o n b i a s s t r i n g) :
”””
RETURNS the l i s t o f each i n d i v i d u a l organism ’ s s e t o f

codon b ia s .
Wil l ev en tua l l y be appended in to a 2D l i s t .
”””
’ codon ’ w i l l t emporar i ly s t o r e each codon (3 n u c l e o t i d e s

)
codon = ””
Declare the condon l i s t v a r i a b l e
c l i s t = []

Sta r t i ng at index 1 , because index 0 i s the ” [”
cha rac t e r that we do not need (see the ’
c o d o n b i a s t a b l e . txt ’ f i l e f o r format)

Ending at (l en (c o d o n b i a s s t r i n g)−1) , because the l a s t
cha rac t e r i s ”] ” that we do not need (see the ’
c o d o n b i a s t a b l e . txt ’ f i l e f o r format)

f o r i in range (1 , (l en (c o d o n b i a s s t r i n g)−1) , 1) :
I f next element i s a nuc l eo t ide , i t i s part o f a

codon .
Store i t in the codon STRING.
i f (c o d o n b i a s s t r i n g [i] . i s a l p h a ()) :

codon = codon + c o d o n b i a s s t r i n g [i]
Every codon conta in s 3 n u c l e o t i d e s .
I f the codon s t r i n g conta in s 3 nuc l eo t id e s ,

append i t to the codon LIST .
i f (l en (codon) == 3) :

c l i s t . append (codon)
Refresh the codon v a r i a b l e f o r the next

codon

46

codon = ””
I f next element i s not a nuc l eo t ide , append an

empty s t r i n g to the l i s t
This w i l l act as a place−ho lder f o r the empty codon

b ia s
e l i f ((c o d o n b i a s s t r i n g [i] == ” ,”) & (

c o d o n b i a s s t r i n g [i −2] == ” ,”)) :
c l i s t . append (” ”)

re turn c l i s t

de f s e a r c h n u c l e o t i d e s e q (organism , gene) :
”””
RETURNS a l i s t o f r e co rd s that match the query
”””
handle = Entrez . e s ea rch (db = ” n u c l e o t i d e ” , term =

organism + ” [Orgn] AND ” + gene + ” [Gene] ”)
record = Entrez . read (handle)
handle . c l o s e ()
re turn record

de f nucleot ide esummary (r e c o r d i d) :
”””
Pr in t s the in fo rmat ion o f a p a r t i c u l a r record from the

Nuc leot ide DB.

This i s needed to help end−use r s dec ide which Nuc leot ide
record they want to use

”””
handle = Entrez . esummary (db = ” n u c l e o t i d e ” , id =

r e c o r d i d)
record = Entrez . read (handle)
handle . c l o s e ()
Pr int ing out the index : adding 1 so as not to con fuse

u s e r s
p r i n t (”INDEX: ” + s t r (i + 1)) ;
Grabbing record [0] because the re i s only one record
Pr int s the ID f o r emphasis
p r i n t (” ID : ” + s t r (record [0] [” Id ”])) ;
Pr in t s GI , Access ion Version , among other

i d e n t i f i c a t i o n i n f o

47

pr in t (record [0] [” Extra ”]) ;
Pr in t s record T i t l e
p r i n t (record [0] [” T i t l e ”]) ;
Pr in t e s record Length
p r i n t (” Length : ” + s t r (record [0] [” Length ”])) ;
p r i n t (”\n”) ;

de f f e t c h s e q (database , index) :
”””
RETURNS the record as a SeqRecord ; need t h i s to t r a n s l a t e

the dna l a t e r
”””
handle = Entrez . e f e t c h (db = database , id = index , r e t type

= ” f a s t a ”)
r e s u l t s = SeqIO . read (handle , ” f a s t a ”)
handle . c l o s e ()
re turn r e s u l t s

de f b l a s t x n u c l e o t i d e s e q (f a s t a s t r i n g , organism query) :
”””
RETURNS the Prote in Sequence f o r the appointed organism .

Resu l t s (50 e n t r i e s MAX) are so r t ed in order by s co r e .
Wil l r e turn the 1 s t r e s u l t (the one with the best match) .
”””
handle = NCBIWWW. qb la s t (” b l a s tx ” , ”nr ” , f a s t a s t r i n g ,

en t r e z que ry = organism query + ” [Orgn] ” , format type
= ” text ”)

#re tu rn s the r e s u l t s as a SeqRecord
r e s u l t = next (SeqIO . parse (handle , ” f a s t a ”))
handle . c l o s e ()
re turn r e s u l t

REFERENCE: CHAP 7 sec 7 .1 (pg 96/335) and sec 7 .3 (pg
99/335) − http :// biopython . org /DIST/ docs / t u t o r i a l / Tuto r i a l
. pdf

de f b l a s t x n u c l e o t i d e s e q l i s t (f a s t a s t r i n g) :
”””
Records are he ld in a l i s t to enable a c c e s s to any record

l a t e r in the program

48

RETURNS reco rd s o f Human Prote in Sequences f o r the g iven
organism . Resu l t s (50 e n t r i e s MAX) are so r t ed in order
by s co r e .

Wil l r e turn a l i s t o f the r e s u l t s .
”””
handle = NCBIWWW. qb la s t (” b l a s tx ” , ”nr ” , f a s t a s t r i n g ,

en t r e z que ry = ”Homo Sapiens [Orgn] ” , format type = ”
text ”)

r e co rd s = l i s t (SeqIO . parse (handle , ” f a s t a ”))
handle . c l o s e ()
re turn r e co rd s

de f f ind DNA from reading frame (reading frame , query ,
s tar t codon , stop codon , p r o t e i n s e q) :

”””
RETURNS the new dna sequence without the DNA be fo r e the

s t a r t codon and from the stop codon beyond
”””
Loop through the l ength o f the non−human organism dna ,

CONSIDER i t s read ing f rame
Star t at the read ing frame index
End 3 p o s i t i o n s be f o r e the end o f the length , s i n c e we

are loop ing by t h r e e s
dna seq = [] # w i l l s t o r e the new dna sequence

f o r i in range (reading frame , l en (query) − 3 , 3) :
Looping f o r s t a r t codon
For each pa i r o f codon , i t w i l l loop through the

l ength o f s t a r t codon
BEWARE: We are only c o n s i d e r i n g the s t a r t codon ’

ATG’ , which occurs 99.9% o f the time

#f o r j in range (0 , 1 , 1) :
codon = query [i] + query [i +1] + query [i +2]
i f (codon == ’ATG’) :

Add codon to dna seq − RESET IT
dna seq = [codon]

Now look ing f o r stop codon !
Begin loop where i t ended in the codon
STart 3 indexes a f t e r i , because

49

s t a r t codon was the prev ious 3 indexes
f o r k in range (i + 3 , l en (query) , 3) :

Try−Except c l a u s e to catch IndexError
that may occur

t ry :
codon = query [k] + query [k+1] + query

[k+2]

Looping f o r stop codon
For each pa i r o f codon a f t e r the

s tar t codon , loop through length
o f stop codon

f o r l in range (0 , l en (stop codon) ,
1) :
I f match and l en (dna seq) =

o r i g i n a l p ro t e in l ength (w/o
gaps)

i f ((codon == stop codon [l]) & (
l en (dna seq) == len (
p r o t e i n s e q))) :
Appending STOP codon , but

i t w i l l not be
inco rpora ted in to the
SEQUENCE

dna seq . append (codon)
re turn dna seq

I f an IndexError occurs , i gno r e t h i s
and go back to f i n d the c o r r e c t Sta r t
Codon

except IndexError :
break ;

Append codon to dna seq
dna seq . append (codon)

re turn −1

de f ge t amino ac id index (amino acid) :
”””
RETURNS the index o f the p ro t e in l e t t e r , i f matched . Else

, r e tu rn s −1 (as an e r r o r)

50

This i s needed in order to get in to the 2D codon b ia s
l i s t and humanize the non−human DNA seq

”””
f o r j in range (0 , l en (a m i n o a c i d s l e t t e r) , 1) :

i f (amino acid == a m i n o a c i d s l e t t e r [j]) :
r e turn j

re turn −1

de f e x p o r t r e s u l t s (organism , gene , dna) :
”””
Creates / Rewrites a f i l e with the r e s u l t s (g iven through

param) and saves onto user ’ s desktop
”””
Getting the user ’ s home environment path
use r s env = os . getenv (”USERPROFILE”)
path = use r s env

Getting the name o f the f i l e the user wishes to save
the f i l e as

n e w f i l e = input (”Name the text f i l e to save the r e s u l t s
in : ”)

f i l e n a m e = n e w f i l e + ” . txt ”

Combining path and f i l e name
f i l e p a t h = path + ”\\Desktop\\” + f i l e n a m e

Creat ing /Opening the f i l e to wr i t e in
f = open (f i l e p a t h , ’w+ ’)
f . wr i t e (”\ nTest Organism : ” + organism)
f . wr i t e (”\nGene : ” + gene)
f . wr i t e (”\nHumanized DNA SEQUENCE: ” + dna)
p r i n t (”\nThe r e s u l t has been saved in the ’” + n e w f i l e

+ ” . txt ’ f i l e on your desktop . ”) ;
f . c l o s e ()

###
MAIN PROGRAM

51

###

##
CREATE a 2D array o f the Codon BIAS Table us ing the ’

Codon Bias DB . txt ’ FILE
##
a m i n o a c i d s l e t t e r = [”A” , ”R” , ”N” , ”D” , ”C” , ”E” , ”Q” , ”G” ,

”H” , ” I ” , ”L” , ”K” , ”M” , ”F” , ”P” , ”S” , ”T” , ”W” , ”Y” , ”V
”]

c o d o n b i a s 2 D l i s t = [a m i n o a c i d s l e t t e r]
This l i s t w i l l be used to determine which organism the user

i s us ing from the txt f i l e
c o d o n b i a s d i r e c t o r y = [”N/A”]

F i l e w i l l be proper ly c l o s e d upon complet ion when us ing the
’ with ’ keyword

with open (” Codon Bias DB . txt ”) as f :
Read each l i n e in the f i l e
f o r l i n e in f :

count = 0 ;
This i s the s t a r t o f a new organism ’ s codon b ia s
I f the l i n e s t a r t s with a d i g i t , i t i s NOT part o f

a comment or an empty l i n e
(see the ”Codon Bias DB . txt ” f i l e f o r r e f e r e n c e)
i f (l i n e [0] . i s d i g i t ()) :

Organism Number
number = l i n e
Organism Name
l i n e = next (f)
name = l i n e
Organism Codon Bias
l i n e = next (f)
codon b ias = l i n e

Cal l the subrout ine to turn t h i s i n to a l i s t
L i s t i s appended to the 2D−Codon− l i s t
c o d o n b i a s 2 D l i s t . append (c o d o n b i a s l i s t (

codon b ias))
WARNING: ”N/A” w i l l be s to r ed in index 0 o f

t h i s l i s t because we want to keep
the 2D l i s t and the d i r e c t o r y complementary

52

c o d o n b i a s d i r e c t o r y . append (name . s t r i p (’\n ’))

p r i n t (”Welcome to the Humanizer !\n”) ;
##
User−Input : User e n t e r s in the l a t i n organism name and gene

they want to humanize
##
tes t o rgan i sm = input (”What i s the l a t i n name o f your t e s t

organism ? ”)

Matching the user−inputed organism with the ’ codon bias DB .
txt ’ f i l e

I f t h i s data i s not found , the program cannot execute :
program e x i t s

e x i s t s = Fal se
f o r i in range (1 , l en (c o d o n b i a s d i r e c t o r y) , 1) :

i f (c o d o n b i a s d i r e c t o r y [i] == te s t o rgan i sm . lower ()) :
t e s t o rgan i sm index = i # This var w i l l l a t e r be

used to connect to the codon b ia s 2D− l i s t
e x i s t s = True
break

i f (e x i s t s == False) :
p r i n t (”\ nSorry ! The organism you entered ’” +

te s t o rgan i sm + ” ’ was NOT FOUND in the ’ Codon Bias DB
. txt ’ f i l e . ”) ;

p r i n t (” Please check your s p e l l i n g or input the data in to
the f i l e , and then try again !\n”) ;

exitPrgm = input (” Goodbye ! ”)
sys . e x i t () # Exit s the program

t e s t g e n e = input (”What i s the b i o l o g i c a l name o f the gene
you are t e s t i n g ? ”)

##
Search ing f o r non−human n u c l e o t i d e (DNA) sequence
##
pr in t (”\ nSearching f o r the DNA sequence f o r gene ’” +

t e s t g e n e + ” ’ f o r t e s t organism\n ’ ” + te s t o rgan i sm +

53

” ’ . . . ”) ;
n u c l e o t i d e r e s u l t s = s e a r c h n u c l e o t i d e s e q (te s t organ i sm ,

t e s t g e n e)
t o t a l e n t r i e s = i n t (n u c l e o t i d e r e s u l t s [” Count ”])

i f (t o t a l e n t r i e s == 0) :
p r i n t (”\nNo r e s u l t s have been found f o r your query

sequence o f ’” + te s t o rgan i sm + ” ’ and ’” + t e s t g e n e
+ ” ’ . ”) ;

exitPrgm = input (”\nGoodbye ! ”)
sys . e x i t () # Exit s the program

pr in t (”\ nResults : ” + n u c l e o t i d e r e s u l t s [” Count ”]) ;
p r i n t (”\nThe r e s u l t s are pr in ted below along with an INDEX

number o f each r e s u l t .\n”) ;

Looping through the r e s u l t s to prov ide a shor t summary o f
each record

Capping the number o f e n t r i e s at 20
max entr i e s = 20

i f (t o t a l e n t r i e s < max entr i e s) :
f o r i in range (0 , t o t a l e n t r i e s , 1) :

r e s u l t i d = n u c l e o t i d e r e s u l t s [” I d L i s t ”] [i]
nucleot ide esummary (r e s u l t i d)
num entr ies = t o t a l e n t r i e s

e l s e :
p r i n t (”\nOnly ” + s t r (max entr i e s) + ” e n t r i e s w i l l be

pr in ted below .\n”)
f o r i in range (0 , max entr ies , 1) :

r e s u l t i d = n u c l e o t i d e r e s u l t s [” I d L i s t ”] [i]
nucleot ide esummary (r e s u l t i d)
num entr ies = max entr i e s

##
User−Input : User s e l e c t s the non−human n u c l e o t i d e (DNA)

sequence record they want
##
whi le True :

t ry :

54

n u c l e o t i d e r e s u l t i n d e x = s t r (input (”Type in the
INDEX of the DNA record you want : ”))

i f (0 < i n t (n u c l e o t i d e r e s u l t i n d e x) <= num entr ies) :
break

p r i n t (” Sorry , i n v a l i d input . Try Again ! ”)
except ValueError :

p r i n t (” Sorry , i n v a l i d input . Try Again ! ”)

p r i n t (”\n\nReturning non−human DNA sequence record f o r
r e s u l t id : ” + n u c l e o t i d e r e s u l t i n d e x)

Fetching the n u c l e o t i d e id :
The user−inputted index needs to be cas ted as an i n t
Subtract ing 1 to the index to balance out the add i t i on

from ’ nucleot ide esummary () ’
i n t i n d e x = i n t (n u c l e o t i d e r e s u l t i n d e x) − 1
r e s u l t i n d e x = n u c l e o t i d e r e s u l t s [” I d L i s t ”] [i n t i n d e x]

Fetching the n u c l e o t i d e sequence
n u c l e o t i d e s e q = f e t c h s e q (” n u c l e o t i d e ” , r e s u l t i n d e x)
p r i n t (”\nNON−HUMAN DNA SEQUENCE RECORD: ”) ;
p r i n t (n u c l e o t i d e s e q) ;

##
Search ing f o r non−human pro t e in sequence
BLASTing n u c l e o t i d e (DNA) seq aga in s t t e s t organism to get

the p ro t e in seq o f that organism
##
pr in t
(”\n\n
∗∗∗”) ;

p r i n t (”∗∗∗∗∗ BLASTING NON−HUMAN DNA SEQ TO RETRIEVE NON−
HUMAN PROTEIN SEQ ∗∗∗∗∗”) ;

p r i n t
(”∗∗∗\
n”) ;

n u c l e o t i d e i d = n u c l e o t i d e s e q . id
b l a s t r e s u l t = b l a s t x n u c l e o t i d e s e q (n u c l e o t i d e i d ,

t e s t o rgan i sm)

55

t o t a l r e s u l t = len (b l a s t r e s u l t)

i f (t o t a l r e s u l t == 0) :
p r i n t (”\nNo Non−Human Prote in Sequence have been found

f o r your query sequence , the non−human DNA sequence
record s e l e c t e d p r e v i o u s l y .\n”) ;

p r i n t (n u c l e o t i d e s e q) ;
exitPrgm = input (”\nGoodbye ! ”)
sys . e x i t () # Exit s the program

#Return the f i r s t r e s u l t bc normally that ’ s the one with the
g r e a t e s t match

r e s u l t i d = b l a s t r e s u l t . id
p r o t e i n s e q = f e t c h s e q (” p ro t e in ” , r e s u l t i d)
p r i n t (”NONHUMAN PROTEIN SEQUENCE RECORD: ”) ;
p r i n t (p r o t e i n s e q) ;

##
Search ing f o r human pro t e in sequence
BLASTing the n u c l e o t i d e (DNA) seq f o r the complimentary

human pro t e in seq f o r the g iven gene
##
pr in t
(”\n\n
∗∗∗”) ;

p r i n t (”∗∗∗∗∗ BLASTING NON−HUMAN DNA SEQ TO RETRIEVE HUMAN
PROTEIN SEQ ∗∗∗∗∗”) ;

p r i n t
(”∗∗∗\
n”) ;

#human organism = ”Homo Sapiens ” #Comparing seq with Homo
Sapiens (Humans)

b l a s t r e s u l t s = b l a s t x n u c l e o t i d e s e q l i s t (n u c l e o t i d e i d)
t o t a l r e s u l t s = len (b l a s t r e s u l t s)

i f (t o t a l r e s u l t s == 0) :
p r i n t (”\nNo Human Prote in Sequence have been found f o r

your query sequence , the non−human DNA sequence record
s e l e c t e d p r e v i o u s l y .\n”) ;

p r i n t (n u c l e o t i d e s e q) ;

56

exitPrgm = input (”\nGoodbye ! ”)
sys . e x i t () # Exit s the program

pr in t (” Resu l t s : ” + s t r (t o t a l r e s u l t s)) ;
p r i n t (”\nThe r e s u l t s are pr in ted below along with an INDEX

number o f each r e s u l t .\n”) ;

There should be 50 max e n t r i e s , capping the e n t r i e s at 20
Looping through the r e s u l t s to prov ide a shor t summary o f

each record
Capping the number o f e n t r i e s at 20
m a x b l a s t r e s u l t s = 20

pr in t (”∗∗∗∗∗ BLAST RESULTS ∗∗∗∗∗”) ;
i f (l en (b l a s t r e s u l t s) < m a x b l a s t r e s u l t s) :

f o r i in range (0 , t o t a l r e s u l t s , 1) :
p r i n t (”INDEX: ” + s t r (i + 1)) ;
Running each r e s u l t ’ s id in to the f e t c h s e q method

to f e t c h the p ro t e in seq
human prote in seq = f e t c h s e q (” p ro t e in ” ,

b l a s t r e s u l t s [i] . id)
p r i n t (human prote in seq) ;
p r i n t (” Length : ” + s t r (l en (b l a s t r e s u l t s [i]))) ;
p r i n t (””) ;
t o t b l a s t r e s u l t s = b l a s t r e s u l t s

e l s e :
p r i n t (”\nOnly ” + s t r (m a x b l a s t r e s u l t s) + ” e n t r i e s

w i l l be pr in ted below .\n”) ;
f o r i in range (0 , m a x b l a s t r e s u l t s , 1) :

p r i n t (”INDEX: ” + s t r (i + 1)) ;
Running each r e s u l t ’ s id in to the f e t c h s e q method

to f e t c h the p ro t e in seq
human prote in seq = f e t c h s e q (” p ro t e in ” ,

b l a s t r e s u l t s [i] . id)
p r i n t (human prote in seq) ;
p r i n t (” Length : ” + s t r (l en (b l a s t r e s u l t s [i]))) ;
p r i n t (””) ;
t o t b l a s t r e s u l t s = m a x b l a s t r e s u l t s

57

##
User−Input : User s e l e c t s the human record they want to

compare with
##
whi le True :

t ry :
s e l e c t i o n r e s u l t i n d e x = s t r (input (”Type in the INDEX

of the record you want : ”))

i f (0 < i n t (s e l e c t i o n r e s u l t i n d e x) <=
t o t b l a s t r e s u l t s) :

break
p r i n t (” Sorry , i n v a l i d input . Try Again ! ”) ;

except ValueError :
p r i n t (” Sorry , i n v a l i d input . Try Again ! ”)

p r i n t (”\ nReturning human pro t e in sequence f o r r e s u l t id : ” +
s e l e c t i o n r e s u l t i n d e x) ;

Fetching the p ro t e in id from the b l a s t r e s u l t s :
The user−inputted index needs to be cas ted as an i n t
Subtract ing 1 to the index to balance out the add i t i on

from e a r l i e r
i n t i n d e x = i n t (s e l e c t i o n r e s u l t i n d e x) − 1
human pro t e i n r e su l t i d = b l a s t r e s u l t s [i n t i n d e x] . id

Fetching the human pro t e in sequence with the p ro t e in id
human prote in seq = f e t c h s e q (” p ro t e in ” ,

human pro t e i n r e su l t i d)

p r i n t (”\nHUMAN PROTEIN SEQUENCE RECORD: ”) ;
p r i n t (human prote in seq) ;

This r e s u l t conta in s an u n i d e n t i f i e d amino ac id (’X’) in
i t s p ro t e in sequence

The a p p l i c a t i o n does not yet support u n i d e n t i f i e d amino
ac id s

u n i d e n t i f i e d a m i n o a c i d s c o u n t = human prote in seq . seq . count
(”X”)

i f (u n i d e n t i f i e d a m i n o a c i d s c o u n t > 0) :
p r i n t (”\ nSorry , the s e l e c t e d human pro t e in sequence

58

r ecord conta in s an u n i d e n t i f i e d amino ac id . ”) ;
p r i n t (” U n i de n t i f i ed amino ac id s are not yet supported by

the Humanizer . ”) ;
p r i n t (” Please t ry again us ing a d i f f e r e n t human pro t e in

sequence s e l e c t i o n . ”) ;
exitPrgm = input (”\nGoodbye ! ”)
sys . e x i t () # Exit s the program

##
ALIGNING the non−human and human pro t e in sequences us ing

BioPython ’ s Pai rwaise2
##
pr in t (”\n\n
∗∗∗”) ;

p r i n t (”∗∗∗∗∗ ALIGNING ’” + te s t o rgan i sm + ” ’ AND ’Homo
Spaiens ’ ∗∗∗∗∗”) ;

p r i n t
(”∗∗∗\n
”) ;

a l ignments = pa i rw i s e2 . a l i g n . l o c a l d s (p r o t e i n s e q . seq ,
human prote in seq . seq , blosum62 , −10, −0.5)

p r i n t (pa i rw i s e2 . format a l ignment (∗ al ignments [0])) ;

The r e s u l t (a l ignments) i s a l i s t conta in ing seqA , seqB ,
score , begin index and end index

The data l i s t e d above are a l l s t o r ed in the f i r s t index o f
a l ignments : a l ignments [0]

Stor ing a l ignments [0] i n to a new v a r i a b l e to ex t r a c t the
i n d i v i d u a l i tems with in t h i s l i s t

a l ignment output = al ignments [0]
non human organism = al ignment output [0] # non−human

pro t e in sequence (i n c l u d e s GAPS)
human organism = al ignment output [1] # human

pro t e in sequence (i n c l u d e s GAPS)

###
Updates the non−human pro t e in sequence (which does not

in c lude gaps) to get a l ength to get the open read ing

59

frame l a t e r
STARTING NON−HUMAN PROTEIN SEQUENCES AT ’M’ , or ’ATG’

BECAUSE THAT IS WHERE THE OPEN−READING FRAME OF THE DNA (
new dna Seq) WILL START

Thus , we are i gno r i ng the encodement o f any amino ac id s
be f o r e the s t a r t codon

###
updated pro te in s eq = ””
pro t e in s equence = p r o t e i n s e q . seq
f o r i in range (0 , l en (p ro t e in s equence) , 1) :

i f (p ro t e in s equence [i] == ”M”) :
f o r j in range (i , l en (p ro t e in s equence) , 1) :

updated pro te in s eq += pro t e in s equence [j]
break

##
Retr i ev ing the 3−frame t r a n s l a t i o n o f the non−human

n u c l e o t i d e (DNA) seq to get the
c o r r e c t READING−FRAME (DNA seq t r a n s l a t e s to i t s Prote in

seq)
##
query = n u c l e o t i d e s e q . seq # non−human DNA seq
t a r g e t = non human organism # non−human PROTEIN seq
s co r e = 0 .0
t ran s l a t ed dna = ””
read ing f rame = 0

FIGURING OUT WHICH READING FRAME WITHIN THE DNA MATCHES THE
PROTEIN SEQ

f o r f r a m e s t a r t in range (3) :
frame = t r a n s l a t e (query [f r a m e s t a r t :])
temp score = pa i rw i s e2 . a l i g n . l o c a l x x (frame , target ,

s c o r e o n l y = True)

This w i l l get the t r a n s l a t e d dna with the best s co r e
i f (temp score > s co r e) :

r ead ing f rame = f r a m e s t a r t
s co r e = temp score
t r an s l a t ed dna = frame

60

##
Extract ing DNA be fo r e the s t a r t codon , and a f t e r the stop

codon from the non−human DNA sequence
Determining the OPEN READING FRAME of teh DNA sequence
See : http :// biopython . org /DIST/ docs / api /Bio . Data . CodonTable
−pysrc . html

##
standard tab l e = CodonTable . unambiguous dna by id [1]
s t a r t codon = standard tab l e . s t a r t c o d o n s
stop codon = standard tab l e . s top codons

Find the open read ing frame o f the dna sequence us ing the
read ing frame

new dna seq = the dna f o r the non−human pro t e in sequence : ’
p ro t e in s eq ’

new dna seq = find DNA from reading frame (reading frame ,
query , s tar t codon , stop codon , updated pro te in s eq)

i f (new dna seq == −1) :
p r i n t (” There has been an e r r o r f i n d i n g the open read ing

frame o f the n u c l e o t i d e sequence . ”) ;
p r i n t (” Please t ry again . ”) ;
exitPrgm = input (” Goodbye ! ”)
sys . e x i t () # Exit s the program

##
HUMANIZING THE GENE
Modifying the updated non−human DNA sequence (’ new dna seq

’) to get a DNA sequence more
a l i gned with the human DNA sequence f o r the user−inputed

gene
##
modi f i ed dna seq = ””
s t a r t = False #Boolean to t rack the s t a r t codon

#This i s r equ i r ed in case the re are gaps
BEFORE the s t a r t codon ,

#thus , the new dna seq (n u c l e o t i d e seq o f
the open read ing frame)

61

#needs to be updated to add the gaps
be f o r e the s t a r t codon

non human organism = pro t e in sequence (seq i n c l u d e s the
gaps)

human organism = pro t e in sequence (seq i n c l u d e s the gaps)
i f (l en (non human organism) == len (human organism)) :

f o r i in range (0 , l en (non human organism) , 1) :
Comparing each charac t e r with in the sequences
i f (non human organism [i] != human organism [i]) :

i f (non human organism [i] == ”−”) :
get the p ro t e in from the human seq (c o l)
amino ac id index = get amino ac id index (

human organism [i])
IF : There i s an e r r o r
i f (amino ac id index == −1) :

p r i n t (” Sorry . There has been an e r r o r
matching an amino ac id from the human
pro t e in sequence to the p r o t e i n s
l i s t e d in the amino ac id s l i s t (’
a m i n o a c i d s l e t t e r ’) . ”) ;

p r i n t (” Error occurs at index ” + s t r (i)
+ ” o f the human pro t e in sequence ”) ;

p r i n t (”Human amino ac id : ” +
human organism [i]) ;

p r i n t (”Non−human amino ac id : ” +
non human organism [i]) ;

exitPrgm = input (”PGoodbye ! ”)
sys . e x i t () # Exit s the program

ELSE: Add the human pro t e in
get the codon from the organism (row =

te s t o rgan i sm index)
add = c o d o n b i a s 2 D l i s t [t e s t o rgan i sm index

] [amino ac id index]
mod i f i ed dna seq += add
Star t codon has been added
i f (add == ”ATG”) :

s t a r t = True

i n s e r t i n g a gap in to the new dna seq (non−
human dna seq)

because there ’ s a gap in i t s p ro t e in

62

sequence : t h i s i s r equ i r ed
to make sure the new dna seq i s t r a n s l a t e d

as c l o s e l y as p o s s i b l e
new dna seq . i n s e r t (12 , ’− ’)
new dna seq . i n s e r t (i , ’− ’)

e l i f (human organism [i] == ”−”) :
Delete the non−human organism pro t e in :
We do not want the model organism ’ s gene

i n t e g r a t e d with the human organism ’ s gene
To Do This : Just don ’ t add anything to the

mod i f i ed dna seq and don ’ t do anything
to new dna seq (which holds the n u c l e o t i d e

seq f o r the non−human orgn) , e l s e t h i s
w i l l mess up the index o f read ing in the

new dna seq .

I f human organism [i] == ”−” and ”−” i s
l o ca t ed be f o r e the s t a r t codon in the
non human organism pro t e in seq

THEN, igno r e the amino ac id (o f the
non human organism) at the same l o c a t i o n
as ”−”

BUT, don ’ t i gno re the dna sequence (
new dna seq) at that p o s i t i o n !

So i n c r e a s e the l ength o f new dna seq
at the beg in ing !

i f ((new dna seq [i] == ”ATG”) & (s t a r t ==
False)) :

new dna seq . i n s e r t (i , ’− ’)
mod i f i ed dna seq = modi f i ed dna seq

non−human [i] and human [i] are not the same
pro t e in

e l s e :
get the p ro t e in from the human seq (c o l)
amino ac id index = get amino ac id index (

human organism [i])
IF : There i s an e r r o r in the human pro t e in

sequence (conta in ing an ambiguous amino
ac id)

i f (amino ac id index == −1) :

63

pr in t (” Sorry . There has been an e r r o r
matching an amino ac id from the human
pro t e in sequence to the p r o t e i n s
l i s t e d in the database . ”) ;

p r i n t (” Error occurs at index ” + s t r (i)
+ ” o f the human pro t e in sequence
s e l e c t e d from the BLAST r e s u l t s . ”) ;

p r i n t (”Human amino ac id : ” +
human organism [i]) ;

p r i n t (”Non−human amino ac id : ” +
non human organism [i]) ;

p r i n t (”\nGoodbye ! ”) ;
sys . e x i t () ;

ELSE: Replace the non−human pro t e in with
the human pro t e in

get the codon from the organism (row =
te s t o rgan i sm index)

add = c o d o n b i a s 2 D l i s t [t e s t o rgan i sm index
] [amino ac id index]

mod i f i ed dna seq += add
Star t codon has been added
i f (add == ”ATG”) :

s t a r t = True

Non human and human pro t e in are the same
e l s e :

Keep the non−human organism pro t e in
add = new dna seq [i]
mod i f i ed dna seq += add
Star t codon has been added
i f (add == ”ATG”) :

s t a r t = True

This should never happen s i n c e the pa i rw i s e al ignment
always makes sure the two pro t e in sequences are o f the
same length

But t h i s i s j u s t a precaut ion .
e l s e :

p r i n t (” Length o f t e s t organism pro t e in sequence and
human pro t e in sequence do not match ! ”) ;

p r i n t (” Cannot humanize the gene at t h i s time . P lease t ry
again . ”) ;

64

exitPrgm = input (” Goodbye ! ”)
sys . e x i t () # Exit s the program

pr in t
(”\n\n
∗∗”)
;

p r i n t (”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ FINAL RESULTS
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”) ;

p r i n t
(”∗∗\
n”) ;

Print the humanized dna sequence
p r i n t (” Test Organism : ” + te s t o rgan i sm) ;
p r i n t (”Gene : ” + t e s t g e n e) ;
p r i n t (” Humanized DNA SEQUENCE: ” + modi f i ed dna seq) ;

do not save = True ;
whi l e (do not save) :

save = input (”\nTo Save the r e s u l t as a t ext f i l e , ente r
’Y’ . \ nElse , ente r ’N’ : ”)

i f save . lower () == ’y ’ :
e x p o r t r e s u l t s (te s t organ i sm , t e s t g ene ,

mod i f i ed dna seq) ;
do not save = False ;

e l i f save . lower () == ’n ’ :
do not save = False ;

exitPrgm = input (”Thank you f o r us ing ’The Humanizer ’ .
Goodbye ! ”)

Exit program
sys . e x i t ()

65

	Introduction
	Background and Related Work
	Understanding the biology
	Learning BioPython
	Related bioinformatics tools

	Design
	System Architecture
	User interface design

	Implementation
	A Step-by-Step Walkthrough

	Testing
	Functional testing
	Usability testing

	Conclusions and Future Work
	Program Code

